1
|
Halfin O, Avram L, Albeck S, Unger T, Motiei L, Margulies D. Unnatural enzyme activation by a metal-responsive regulatory protein. Chem Sci 2024:d4sc02635g. [PMID: 39149216 PMCID: PMC11322901 DOI: 10.1039/d4sc02635g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
As a result of calcium ion binding, the calcium-dependent regulatory protein calmodulin (CaM) undergoes a conformational change, enabling it to bind to and activate a variety of enzymes. However, the detoxification enzyme glutathione S-transferase (GST) is notably not among the enzymes activated by CaM. In this study, we demonstrate the feasibility of establishing, in vitro, an artificial regulatory link between CaM and GST using bifunctional chemical transducer (CT) molecules possessing binders for CaM and GST. We show that the CTs convert the constitutively active GST into a triggerable enzyme whose activity is unnaturally regulated by the CaM conformational state and consequently, by the level of calcium ions. The ability to reconfigure the regulatory function of CaM demonstrates a novel mode by which CTs could be employed to mediate artificial protein crosstalk, as well as a new means to achieve artificial control of enzyme activity by modulating the coordination of metal ions. Within this study, we also investigated the impact of covalent interaction between the CTs and the enzyme target. This investigation offers further insights into the mechanisms governing the function of CTs and the possibility of rendering them isoform specific.
Collapse
Affiliation(s)
- Olga Halfin
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot Israel
| | - Shira Albeck
- Department of Life Sciences Core Facilities, Weizmann Institute of Science Rehovot Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities, Weizmann Institute of Science Rehovot Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
2
|
Suss O, Halfin O, Porat Z, Fridmann Sirkis Y, Motiei L, Margulies D. Artificial Protein Crosstalk with a Molecule that Exchanges Binding Partners. Angew Chem Int Ed Engl 2024; 63:e202312461. [PMID: 38010219 DOI: 10.1002/anie.202312461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Drawing inspiration from allosteric signaling enzymes, whose catalytic and regulatory units are non-covalently linked, we have devised a method to establish unnatural, effector-mediated enzyme activation within native cells. The feasibility of this approach is demonstrated by introducing a synthetic regulatory unit (sRU) onto glycogen synthase kinase 3 (GSK-3) through non-covalent means. Our study reveals that this synthetic regulator mediates an unnatural crosstalk between GSK-3 and lactate dehydrogenase A (LDHA), whose expression is regulated by cellular oxygen levels. Specifically, with this approach, the constitutively active GSK-3 is transformed into an activable enzyme, whereas LDHA is repurposed as an unnatural effector protein that controls the activity of the kinase, making it unnaturally dependent on the cell's hypoxic response. These findings demonstrate a step toward imitating the function of effector-regulated cell-signaling enzymes, which play a key biological role in mediating the response of cells to changes in their environment. In addition, at the proof-of-principle level, our results indicate the potential to develop a new class of protein inhibitors whose inhibitory effect in cells is dictated by the cell's environment and consequent protein expression profile.
Collapse
Affiliation(s)
- Ohad Suss
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Olga Halfin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yael Fridmann Sirkis
- Protein Analysis Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
3
|
Motiei L, Margulies D. Molecules that Generate Fingerprints: A New Class of Fluorescent Sensors for Chemical Biology, Medical Diagnosis, and Cryptography. Acc Chem Res 2023. [PMID: 37335975 DOI: 10.1021/acs.accounts.3c00162] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
ConspectusFluorescent molecular sensors, often referred to as "turn-on" or "turn-off" fluorescent probes, are synthetic agents that change their fluorescence signal in response to analyte binding. Although these sensors have become powerful analytical tools in a wide range of research fields, they are generally limited to detecting only one or a few analytes. Pattern-generating fluorescent probes, which can generate unique identification (ID) fingerprints for different analytes, have recently emerged as a new class of luminescent sensors that can address this limitation. A unique characteristic of these probes, termed ID-probes, is that they integrate the qualities of conventional small-molecule-based fluorescent sensors and cross-reactive sensor arrays (often referred to as chemical, optical, or electronic noses/tongues). On the one hand, ID-probes can discriminate between various analytes and their combinations, akin to array-based analytical devices. On the other hand, their minute size enables them to analyze small-volume samples, track dynamic changes in a single solution, and operate in the microscopic world, which the macroscopic arrays cannot access.Here, we describe the principles underlying the ID-probe technology, as well as provide an overview of different ID-probes that have been developed to date and the ways they can be applied to a wide range of research fields. We describe, for example, ID-probes that can identify combinations of protein biomarkers in biofluids and in living cells, screen for several protein inhibitors simultaneously, analyze the content of Aβ aggregates, as well as ensure the quality of small-molecule and biological drugs. These examples highlight the relevance of this technology to medical diagnosis, bioassay development, cell and chemical biology, and pharmaceutical quality assurance, among others. ID-probes that can authorize users and protect secret data are also presented and the mechanisms that enable them to hide (steganography), encrypt (cryptography), and prevent access to (password protection) information are discussed.The versatility of this technology is further demonstrated by describing two types of probes: unimolecular ID-probes and self-assembled ID-probes. Probes from the first type can operate inside living cells, be recycled, and their initial patterns can be more easily obtained in a reproducible manner. The second type of probes can be readily modified and optimized, allowing one to prepare various different probes from a much wider range of fluorescent reporters and supramolecular recognition elements. Taken together, these developments indicate that the ID-probe sensing methodology is generally applicable, and that such probes can better characterize analyte mixtures or process chemically encoded information than can the conventional fluorescent molecular sensors. We therefore hope that this review will inspire the development of new types of pattern-generating probes, which would extend the fluorescence molecular toolbox currently used in the analytical sciences.
Collapse
Affiliation(s)
- Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Zhu L, Chang Y, Li Y, Qiao M, Liu L. Biosensors Based on the Binding Events of Nitrilotriacetic Acid-Metal Complexes. BIOSENSORS 2023; 13:bios13050507. [PMID: 37232868 DOI: 10.3390/bios13050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Molecular immobilization and recognition are two key events for the development of biosensors. The general ways for the immobilization and recognition of biomolecules include covalent coupling reactions and non-covalent interactions of antigen-antibody, aptamer-target, glycan-lectin, avidin-biotin and boronic acid-diol. Tetradentate nitrilotriacetic acid (NTA) is one of the most common commercial ligands for chelating metal ions. The NTA-metal complexes show high and specific affinity toward hexahistidine tags. Such metal complexes have been widely utilized in protein separation and immobilization for diagnostic applications since most of commercialized proteins have been integrated with hexahistidine tags by synthetic or recombinant techniques. This review focused on the development of biosensors with NTA-metal complexes as the binding units, mainly including surface plasmon resonance, electrochemistry, fluorescence, colorimetry, surface-enhanced Raman scattering spectroscopy, chemiluminescence and so on.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
5
|
Adler S, Motiei L, Mankovski N, Cohen H, Margulies D. Fluorescent Labelling of Cell Surface Proteins on a Solid Support. Isr J Chem 2021. [DOI: 10.1002/ijch.202100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sean Adler
- Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
| | - Naama Mankovski
- Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
| | - Hagai Cohen
- Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
| | - David Margulies
- Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
6
|
Hatai J, Prasad PK, Lahav-Mankovski N, Oppenheimer-Low N, Unger T, Sirkis YF, Dadosh T, Motiei L, Margulies D. Assessing changes in the expression levels of cell surface proteins with a turn-on fluorescent molecular probe. Chem Commun (Camb) 2021; 57:1875-1878. [PMID: 33427257 DOI: 10.1039/d0cc07095e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tri-nitrilotriacetic acid (NTA)-based fluorescent probes were developed and used to image His-tagged-labelled outer membrane protein C (His-OmpC) in live Escherichia coli. One of these probes was designed to light up upon binding, which provided the means to assess changes in the His-OmpC expression levels by taking a simple fluorescence spectrum.
Collapse
Affiliation(s)
- Joydev Hatai
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Prasad PK, Motiei L, Margulies D. Steps toward enhancing the fluorescence of small-molecule-based protein labels using supramolecular hosts. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
8
|
Kishore Prasad P, Lahav-Mankovski N, Motiei L, Margulies D. Encrypting messages with artificial bacterial receptors. Beilstein J Org Chem 2020; 16:2749-2756. [PMID: 33224301 PMCID: PMC7670116 DOI: 10.3762/bjoc.16.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
A method for encrypting messages using engineered bacteria and different fluorescently labeled synthetic receptors is described. We show that the binding of DNA-based artificial receptors to E. coli expressing His-tagged outer membrane protein C (His-OmpC) induces a Förster resonance energy transfer (FRET) between the dyes, which results in the generation of a unique fluorescence fingerprint. Because the bacteria continuously divide, the emission pattern generated by the modified bacteria dynamically changes, enabling the system to produce encryption keys that change with time. Thus, this development indicates the potential contribution of live-cell-based encryption systems to the emerging area of information protection at the molecular level.
Collapse
Affiliation(s)
| | - Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Peri-Naor R, Pode Z, Lahav-Mankovski N, Rabinkov A, Motiei L, Margulies D. Glycoform Differentiation by a Targeted, Self-Assembled, Pattern-Generating Protein Surface Sensor. J Am Chem Soc 2020; 142:15790-15798. [PMID: 32786755 DOI: 10.1021/jacs.0c05644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A method for generating targeted, pattern-generating, protein surface sensors via the self-assembly of modified oligodeoxynucleotides (ODNs) is described. The simplicity by which these systems can be created enabled the development of a sensor that can straightforwardly discriminate between distinct glycoform populations. By using this sensor to identify glycosylation states of a therapeutic protein, we demonstrate the diagnostic potential of this approach as well as the feasibility of integrating a wealth of supramolecular receptors and sensors into higher-order molecular analytical devices with advanced properties. For example, the facile device integration was used to attach the well-known anthracene-boronic acid (An-BA) probe to a biomimetic DNA scaffold and consequently, to use the unique photophysical properties of An-BA to improve glycoform differentiation. In addition, the noncovalent assembly enabled us to modify the sensor with a trinitrilotriacetic acid (tri-NTA)-Ni2+ complex, which endows it with selectivity toward a hexa-histidine tag (His-tag). The selective responses of the system to diverse His-tag-labeled proteins further demonstrate the potential applicability of such sensors and validate the mechanism underlying their function.
Collapse
Affiliation(s)
- Ronny Peri-Naor
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zohar Pode
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aharon Rabinkov
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Lahav-Mankovski N, Prasad PK, Oppenheimer-Low N, Raviv G, Dadosh T, Unger T, Salame TM, Motiei L, Margulies D. Decorating bacteria with self-assembled synthetic receptors. Nat Commun 2020; 11:1299. [PMID: 32157077 PMCID: PMC7064574 DOI: 10.1038/s41467-020-14336-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The responses of cells to their surroundings are mediated by the binding of cell surface proteins (CSPs) to extracellular signals. Such processes are regulated via dynamic changes in the structure, composition, and expression levels of CSPs. In this study, we demonstrate the possibility of decorating bacteria with artificial, self-assembled receptors that imitate the dynamic features of CSPs. We show that the local concentration of these receptors on the bacterial membrane and their structure can be reversibly controlled using suitable chemical signals, in a way that resembles changes that occur with CSP expression levels or posttranslational modifications (PTMs), respectively. We also show that these modifications can endow the bacteria with programmable properties, akin to the way CSP responses can induce cellular functions. By programming the bacteria to glow, adhere to surfaces, or interact with proteins or mammalian cells, we demonstrate the potential to tailor such biomimetic systems for specific applications. Cell surface proteins mediate the interactions between cells and their extracellular environment. Here the authors design synthetic biomemetic receptor-like sensors that facilitate programmable interactions between bacteria and their target.
Collapse
Affiliation(s)
- Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Pragati Kishore Prasad
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Noa Oppenheimer-Low
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gal Raviv
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tamar Unger
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tomer Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
11
|
Zheng X, Zhu W, Ni F, Ai H, Gong S, Zhou X, Sessler JL, Yang C. Simultaneous dual-colour tracking lipid droplets and lysosomes dynamics using a fluorescent probe. Chem Sci 2019; 10:2342-2348. [PMID: 30881662 PMCID: PMC6385674 DOI: 10.1039/c8sc04462g] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
After entering a cell, most small molecule fluorescent probes are dispersed in the cytoplasm before they then accumulate in a specific organelle or subcellular zone. Molecules that can enter two or more organelles with high selectivity are all but unknown. In this work, we report a naphthalimide-based fluorescent probe, NIM-7, that allows lipid droplets and lysosomes to be labelled simultaneously and with high specificity. These subcellular entities can then be visualized readily through yellow and red fluorescence, using different excitation and detection channels. NIM-7 allows 3D imaging and quantitative visualizing of lipid droplets and lysosomes. It is also able to track simultaneously the movement of lipid droplets and lysosomes in real-time. We also report here that NIM-7 can be used to image both different cell lines and zebrafish embryos.
Collapse
Affiliation(s)
- Xujun Zheng
- Department of Chemistry , Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , P. R. China .
- Shenzhen Key Laboratory of Polymer Science and Technology , College of Materials Science and Engineering , Shenzhen University , Shenzhen , 518060 , P. R. China
| | - Wencheng Zhu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , P. R. China .
| | - Fan Ni
- Department of Chemistry , Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , P. R. China .
| | - Hua Ai
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , P. R. China .
| | - Shaolong Gong
- Department of Chemistry , Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , P. R. China .
| | - Xiang Zhou
- Department of Chemistry , Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , P. R. China .
| | - Jonathan L Sessler
- Center for Supramolecular Chemistry and Catalysis , Shanghai University , Shanghai 200444 , P. R. China
| | - Chuluo Yang
- Department of Chemistry , Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , P. R. China .
- Shenzhen Key Laboratory of Polymer Science and Technology , College of Materials Science and Engineering , Shenzhen University , Shenzhen , 518060 , P. R. China
| |
Collapse
|
12
|
Hewitt SH, Wilson AJ. Protein sensing and discrimination using highly functionalised ruthenium(ii) tris(bipyridyl) protein surface mimetics in an array format. Chem Commun (Camb) 2018; 53:12278-12281. [PMID: 29090688 DOI: 10.1039/c7cc06175g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ruthenium(ii) tris(bipyridyl) protein surface mimetics are used in an array format to sense and discriminate proteins including therapeutically relevant targets, hDM2 and MCL-1, using linear discriminant analysis (LDA).
Collapse
Affiliation(s)
- Sarah H Hewitt
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
13
|
Hui EYL, Rout B, Tan YS, Verma CS, Chan KP, Johannes CW. An intramolecular tryptophan-condensation approach for peptide stapling. Org Biomol Chem 2018; 16:389-392. [DOI: 10.1039/c7ob02667f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stapled peptides are gaining tremendous interest as next-generation therapeutic agents to target protein–protein interactions. Herein, we report an intramolecular peptide stapling method which links two tryptophan residues at C2 position of the indole moieties via acid-mediated condensation with an aldehyde.
Collapse
Affiliation(s)
- Eunice Y.-L. Hui
- Division of Organic Chemistry
- Institute of Chemical and Engineering Sciences
- Agency for Science Technology and Research (A*STAR)
- Singapore 138665
| | - Bhimsen Rout
- Experimental Dermatology Division
- Institute of Medical Biology
- A*STAR
- Singapore 138648
| | - Yaw Sing Tan
- Bioinformatics Institute
- Agency for Science Technology and Research (A*STAR)
- Singapore 138671
| | - Chandra S. Verma
- Bioinformatics Institute
- Agency for Science Technology and Research (A*STAR)
- Singapore 138671
- Department of Biological Sciences
- National University of Singapore
| | - Kok-Ping Chan
- Division of Organic Chemistry
- Institute of Chemical and Engineering Sciences
- Agency for Science Technology and Research (A*STAR)
- Singapore 138665
| | - Charles W. Johannes
- Division of Organic Chemistry
- Institute of Chemical and Engineering Sciences
- Agency for Science Technology and Research (A*STAR)
- Singapore 138665
| |
Collapse
|
14
|
Liu T, Gao Y, Zhang X, Wan Y, Du L, Fang H, Li M. Discovery of a Turn-On Fluorescent Probe for Myeloid Cell Leukemia-1 Protein. Anal Chem 2017; 89:11173-11177. [DOI: 10.1021/acs.analchem.7b01148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tingting Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yuqi Gao
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Xiaomeng Zhang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yichao Wan
- Key
Laboratory of Theoretical Organic Chemistry and Functional Molecule
(MOE), College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Lupei Du
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Hao Fang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
- State
Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
15
|
Preise der israelischen chemischen Gesellschaft 2016: D. Milstein, I. Willner, D. Goldfarb, D. Margulies, D. Pappo / Gottfried-Wilhelm-Leibniz-Preis: L. Ackermann und J. P. Spatz / Adolf-Lieben-Vorlesung: A. Fürstner. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Israel Chemical Society Prizes 2016: D. Milstein, I. Willner, D. Goldfarb, D. Margulies, D. Pappo / Gottfried Wilhelm Leibniz Prize: L. Ackermann and J. P. Spatz / Adolf Lieben Lectureship: A. Fürstner. Angew Chem Int Ed Engl 2017; 56:1957-1958. [DOI: 10.1002/anie.201700079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Peri-Naor R, Motiei L, Margulies D. Mimicking the Function of Signaling Proteins: Toward Artificial Signal Transduction Therapy. J Vis Exp 2016. [PMID: 27768030 DOI: 10.3791/54396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Signal transduction pathways, which control the response of cells to various environmental signals, are mediated by the function of signaling proteins that interact with each other and activate one other with high specificity. Synthetic agents that mimic the function of these proteins might therefore be used to generate unnatural signal transduction steps and consequently, alter the cell's function. We present guidelines for designing 'chemical transducers' that can induce artificial communication between native proteins. In addition, we present detailed protocols for synthesizing and testing a specific 'transducer', which can induce communication between two unrelated proteins: platelet-derived growth-factor (PDGF) and glutathione-S-transferase (GST). The way by which this unnatural PDGF-GST communication could be used to control the cleavage of an anticancer prodrug is also presented, indicating the potential for using such systems in 'artificial signal transduction therapy'. This work is intended to facilitate developing additional 'transducers' of this class, which may be used to mediate intracellular protein-protein communication and consequently, to induce artificial cell signaling pathways.
Collapse
Affiliation(s)
- Ronny Peri-Naor
- Department of Organic Chemistry, Weizmann Institute of Science
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science;
| |
Collapse
|