1
|
Zhang Y, Pang S, Fu J, Li X, MoZeng Y, He G, Fang Z, Li W, Peng D, Zhang X, Jiang L. Enzyme-Mimic Photoinitiated Flow-Polymerization with High Stereoselectivity under Mild Conditions. J Am Chem Soc 2025; 147:12150-12161. [PMID: 40165479 DOI: 10.1021/jacs.5c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Enzymatic reactions can achieve efficient flow-polymerization with specificity and high stereoselectivity. However, current enzyme-mimic polymerization systems cannot achieve high stereoregularity in flow reactions under mild conditions. This inefficient chain control may be due to the absence of a specific catalyst structure for the target monomer. This study reports a model of enzyme-mimic catalytic material for the polymerization of a specific monomer. In particular, the specific enzyme-mimic photoinitiated flow-polymerization of benzyl acrylate was realized at 22 °C using zinc porphyrin metal-organic framework (Zn-PMOF) membranes with one-dimensional nanochannels, achieving the efficient synthesis of highly heterotactic polymers. Under visible light irradiation, the zinc porphyrin core on the membrane surface could initiate polymerization, while copper porphyrin MOF with similar structures could not. The specific channel structure of the Zn-PMOF membrane provided space for stereochemical control. Control experiments, density functional theory simulations, and spectroscopic characterizations show that the combination of size effect and channel-monomer interactions realized higher monomer conversion and polymer stereoregularity in the flow reaction. Furthermore, the crystallinity, shear stress, and ionic conductivity of enzyme-mimic polymers were considerably better than those of bulk polymerization products. Thus, this study provides a method for enzyme-mimic polymerization with high stereoselectivity under mild conditions.
Collapse
Affiliation(s)
- Yuhui Zhang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
| | - Shuai Pang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
| | - Jiangwei Fu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiang Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinting MoZeng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Guandi He
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenyuan Fang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Wei Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Daoling Peng
- Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Xiqi Zhang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
2
|
Zhang X, Chen X, Fu S, Cao Z, Gong W, Liu Y, Cui Y. Homochiral π-Rich Covalent Organic Frameworks Enabled Chirality Imprinting in Conjugated Polymers: Confined Polymerization and Chiral Memory from Scratch. Angew Chem Int Ed Engl 2024; 63:e202403878. [PMID: 38506535 DOI: 10.1002/anie.202403878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Optically active π-conjugated polymers (OACPs) have garnered increasing research interest for their resemblance to biological helices and intriguing chirality-related functions. Traditional methods for synthesizing involve decorating achiral conjugated polymer architectures with enantiopure side substituents through complex organic synthesis. Here, we report a new approach: the templated synthesis of unsubstituted OACPs via supramolecularly confined polymerizations of achiral monomers within nanopores of 2D or 3D chiral covalent organic frameworks (CCOFs). We show that the chiral π-rich nanospaces facilitate the in situ enantiospecific polymerization and self-propagation, akin to nonenzymatic polymerase chain reaction (PCR) system, resulting in chiral imprinting. The stacked polymer chains are kinetically inert enough to memorize the chiral information after liberating from CCOFs, and even after treatment at temperature up to 200 °C. The isolated OACPs demonstrate robust enantiodiscrimination, achieving up to 85 % ee in separating racemic amino acids. This underscores the potential of utilizing CCOFs as templates for supramolecularly imprinting optical activity into CPs, paving the way for synthetic evolution and advanced functional exploration of OACPs.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinfa Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiguo Fu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziping Cao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
De Nicola A, Correa A, Bracco S, Perego J, Sozzani P, Comotti A, Milano G. Collective dynamics of molecular rotors in periodic mesoporous organosilica: a combined solid-state 2H-NMR and molecular dynamics simulation study. Phys Chem Chem Phys 2022; 24:666-673. [PMID: 34904981 DOI: 10.1039/d1cp05013c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular rotors offer a platform to realize controlled dynamics and modulate the functions of solids. The motional mechanisms in arrays of rotors have not been explored in depth. Crystal-like porous organosilicas, comprising p-phenylene rotators pivoted onto a siloxane scaffold, were modelled using molecular dynamics (MD) simulations. Long simulations, on a microsecond scale, allowed to follow the reorientation statistics of rotor collections and single out group configurations and frequency distributions as a function of temperature. The motions observed in the MD simulations support a multiple-site model for rotor reorientations. Computed motional frequencies revealed a complex rotatory phenomenon combining an ultra-fast libration motion (oscillation up to 30°) with a slow and fast 180° flip reorientation. Adopting a multiple-site model provides a more accurate simulation of the 2H-NMR spectra and a rationalization of their temperature dependence. In particular, rotators endowed with distinct rates could be explained by the presence of slower rings locked in a T-shaped conformation.
Collapse
Affiliation(s)
- Antonio De Nicola
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy.
| | - Andrea Correa
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Complesso Monte S. Angelo, 80126, Napoli, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milano, Italy.
| | - Jacopo Perego
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milano, Italy.
| | - Piero Sozzani
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milano, Italy.
| | - Angiolina Comotti
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milano, Italy.
| | - Giuseppe Milano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naploli, Italy
| |
Collapse
|
4
|
Kitao T, Zhang X, Uemura T. Nanoconfined synthesis of conjugated ladder polymers. Polym Chem 2022. [DOI: 10.1039/d2py00809b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in controlled synthesis of conjugated ladder polymers using templates.
Collapse
Affiliation(s)
- Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Xiyuan Zhang
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Lin Z, Cao N, Sun Z, Li W, Sun Y, Zhang H, Pang J, Jiang Z. Based On Confined Polymerization: In Situ Synthesis of PANI/PEEK Composite Film in One-Step. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103706. [PMID: 34766471 PMCID: PMC8728828 DOI: 10.1002/advs.202103706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Indexed: 05/11/2023]
Abstract
Confined polymerization is an effective method for precise synthesis, which can further control the micro-nano structure inside the composite material. Polyaniline (PANI)-based composites are usually prepared by blending and original growth methods. However, due to the strong rigidity and hydrogen bonding of PANI, the content of PANI composites is low and easy to agglomerate. Here, based on confined polymerization, it is reported that polyaniline /polyether ether ketone (PANI/PEEK) film with high PANI content is synthesized in situ by a one-step method. The micro-nano structure of the two polymers in the confined space is further explored and it is found that PANI grows in the free volume of the PEEK chain, making the arrangement of the PEEK chain more orderly. Under the best experimental conditions, the prepared 16 µm-PANI/PEEK film has a dielectric constant of 205.4 (dielectric loss 0.401), the 75 µm-PANI/PEEK film has a conductivity of 3.01×10-4 S m-1 . The prepared PANI/PEEK composite film can be further used as electronic packaging materials, conductive materials, and other fields, which has potential application prospects in anti-static, electromagnetic shielding materials, corrosion resistance, and other fields.
Collapse
Affiliation(s)
- Ziyu Lin
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Ning Cao
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Zhonghui Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Wenying Li
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Yirong Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Haibo Zhang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Jinhui Pang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Zhenhua Jiang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| |
Collapse
|
6
|
Wang K, Shen L, Zhou G. Controlled individual and partial polyethylene nanofibers with high Tm2 prepared by PPM-supported Cp 2TiCl 2 catalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj01378e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled individual and partial nanofibrous polyethylenes with high second melting point (Tm2) were obtained through ethylene-confined polymerization using a porous polymer microsphere (PPM)-supported Cp2TiCl2 catalyst.
Collapse
Affiliation(s)
- Kui Wang
- Yancheng Institute of Technology
- School of Materials Science and Engineering
- Yancheng
- China
| | - Lu Shen
- Yancheng Institute of Technology
- School of Materials Science and Engineering
- Yancheng
- China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics (DICP)
- Chinese Academy of Sciences (CAS)
- Dalian
- China
| |
Collapse
|
7
|
Kollofrath D, Geppert M, Polarz S. Copolymerization of Mesoporous Styrene-Bridged Organosilica Nanoparticles with Functional Monomers for the Stimuli-Responsive Remediation of Water. CHEMSUSCHEM 2020; 13:5100-5111. [PMID: 32662565 PMCID: PMC7540170 DOI: 10.1002/cssc.202001264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Indexed: 06/11/2023]
Abstract
For every mass product, there are problems associated with the resulting waste. Residues of hormones in urine cannot be removed sufficiently from wastewater, and this has undesired consequences. An ideal adsorbent would take up the impurity, enable a simple separation and recyclability. Polymer colloids with high affinity towards the drug, accessible porosity, high surface area, and stimuli-responsive properties would be candidates, but such a complex system does not exist. Here, porous vinyl-functionalized organosilica nanoparticles prepared from a styrene bridged sol-gel precursor act as monomers. Initiation of the polymerization at the pore walls and addition of functional monomers result in a special copolymer, which is covalently linked to the surface and covers it. An orthogonal modification of external surface was done by click attachment of a thermoresponsive polymer. The final core-shell system is able to remove quantitatively hydrophobic molecules such as the hormone progesterone from water. A change of temperature closes the pores and induces the aggregation of the particles. After separation one can reopen the particles and recycle them.
Collapse
Affiliation(s)
- Dennis Kollofrath
- Institute of Inorganic ChemistryLeibniz-University of HannoverCallinstrasse 930167HannoverGermany
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Marcel Geppert
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Sebastian Polarz
- Institute of Inorganic ChemistryLeibniz-University of HannoverCallinstrasse 930167HannoverGermany
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
8
|
Zhang X, Kitao T, Piga D, Hongu R, Bracco S, Comotti A, Sozzani P, Uemura T. Carbonization of single polyacrylonitrile chains in coordination nanospaces. Chem Sci 2020; 11:10844-10849. [PMID: 34094338 PMCID: PMC8162375 DOI: 10.1039/d0sc02048f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has been over half a century since polyacrylonitrile (PAN)-based carbon fibers were first developed. However, the mechanism of the carbonization reaction remains largely unknown. Structural evolution of PAN during the preoxidation reaction, a stabilization reaction, is one of the most complicated stages because many chemical reactions, including cyclization, dehydration, and cross-linking reactions, simultaneously take place. Here, we report the stabilization reaction of single PAN chains within the one-dimensional nanochannels of metal–organic frameworks (MOFs) to study an effect of interchain interactions on the stabilization process as well as the structure of the resulting ladder polymer (LP). The stabilization reaction of PAN within the MOFs could suppress the rapid generation of heat that initiates the self-catalyzed reaction and inevitably provokes many side-reactions and scission of PAN chains in the bulk state. Consequently, LP prepared within the MOFs had a more extended conjugated backbone than the bulk condition. Accommodation of polyacrylonitrile in MOFs facilitated and regulated the transformation to ladder polymer in the carbonization process.![]()
Collapse
Affiliation(s)
- Xiyuan Zhang
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan .,Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Daniele Piga
- Department of Material Science, University of Milano Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Ryoto Hongu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Silvia Bracco
- Department of Material Science, University of Milano Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Angiolina Comotti
- Department of Material Science, University of Milano Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Piero Sozzani
- Department of Material Science, University of Milano Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan .,Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan.,CREST, Japan Science and Technology Agency (JST) 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
9
|
Wang K, Lei J, Nie H, Shen L, Chen P, Zhou G. Effects of Interconnected Polymer Nanopores Leading to Different Degrees of Confined Polymerization. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kui Wang
- Ningbo Key Laboratory of Polymer Materials; Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
| | - Jinhua Lei
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Heran Nie
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Lu Shen
- Ningbo Key Laboratory of Polymer Materials; Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
| | - Peng Chen
- Ningbo Key Laboratory of Polymer Materials; Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
| | - Guangyuan Zhou
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| |
Collapse
|
10
|
Mochizuki S, Kitao T, Uemura T. Controlled polymerizations using metal-organic frameworks. Chem Commun (Camb) 2018; 54:11843-11856. [PMID: 30259030 DOI: 10.1039/c8cc06415f] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This short review focuses on recent developments in polymerization reactions using metal-organic frameworks (MOFs). MOFs are crystalline porous materials that are able to tune their frameworks, enabling their use as promising media for polymerization. The precise design of the MOF structure is key to controlling polymerizations, allowing for the regulation of not only primary but also higher-order structures.
Collapse
Affiliation(s)
- Shuto Mochizuki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan. and Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan. and Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
11
|
Mizoshita N, Inagaki S. Charge Separation in a Multifunctionalized Framework of Hydrogen-Bonded Periodic Mesoporous Organosilica. Chem Asian J 2018; 13:2117-2125. [PMID: 29877624 DOI: 10.1002/asia.201800779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 11/09/2022]
Abstract
Integration of functional molecular parts into nanoporous materials in a state that allows intermolecular charge or energy transfer is one of the key approaches to the development of photofunctional and electroactive materials. Herein, we report charge separation in a functionalized framework of a periodic mesoporous organosilica (PMO) self-assembled by hydrogen bonds. Electroactive π-conjugated organic species with different electron-donating and electron-accepting properties were selectively fixed onto the external surface of a nanoparticulate PMO, within the pore wall, and onto the surface of the internal mesopore. UV irradiation of the modified PMO resulted in photoinduced electron transfer and charge separation from the external surface to the pore wall and from the pore wall to the surface of the internal mesopores. These results suggest the high potential of multifunctionalized PMOs in the construction of photocatalytic reaction fields.
Collapse
Affiliation(s)
| | - Shinji Inagaki
- Toyota Central R&D Laboratories Inc., Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
12
|
Uemura T, Nakanishi R, Mochizuki S, Kitagawa S, Mizuno M. Radical Polymerization of Vinyl Monomers in Porous Organic Cages. Angew Chem Int Ed Engl 2016; 55:6443-7. [DOI: 10.1002/anie.201601587] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/09/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Takashi Uemura
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
- CREST Japan Science and Technology Agency (JST); 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ryo Nakanishi
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Shuto Mochizuki
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Susumu Kitagawa
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University, Yoshida, Sakyo-ku; Kyoto 606-8501 Japan
| | - Motohiro Mizuno
- Department of Chemistry; Graduate School of Natural Science & Technology; Kanazawa University, Kakuma; Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
13
|
Uemura T, Nakanishi R, Mochizuki S, Kitagawa S, Mizuno M. Radical Polymerization of Vinyl Monomers in Porous Organic Cages. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takashi Uemura
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
- CREST Japan Science and Technology Agency (JST); 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ryo Nakanishi
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Shuto Mochizuki
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Susumu Kitagawa
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University, Yoshida, Sakyo-ku; Kyoto 606-8501 Japan
| | - Motohiro Mizuno
- Department of Chemistry; Graduate School of Natural Science & Technology; Kanazawa University, Kakuma; Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|