1
|
Kuji K, Kawamoto M, Enomoto M, Kuwahara S, Meguro Y. Enantioselective synthesis of the aglycone of burnettramic acid A. Biosci Biotechnol Biochem 2023; 87:1442-1452. [PMID: 37682523 DOI: 10.1093/bbb/zbad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Enantioselective total synthesis of the aglycone of burnettramic acid A, an antifungal pyrrolizidinedione with a terminally mannosylated long acyl chain produced by Aspergillus fungi, has been achieved from a known carboxylic acid by a 14-step sequence. The key steps include 2 types of asymmetric alkylation, coupling of an acetylide intermediate with (S)-epichlorohydrin to provide an acetylenic epoxide in 1 pot, and the Birch reduction to effect desulfonylation, semi-reduction of triple bond, and debenzylation in a concurrent manner. Good agreement of the synthetic aglycone with naturally occurring one in 1H and 13C nuclear magnetic resonance (NMR) spectra, coupled with previously reported unambiguous stereochemical assignment of the sugar moiety, has confirmed the structure of burnettramic acid A.
Collapse
Affiliation(s)
- Kohei Kuji
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Misaki Kawamoto
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masaru Enomoto
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yasuhiro Meguro
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Lee KM, Le P, Sieber SA, Hacker SM. Degrasyn exhibits antibiotic activity against multi-resistant Staphylococcus aureus by modifying several essential cysteines. Chem Commun (Camb) 2020; 56:2929-2932. [PMID: 32039420 DOI: 10.1039/c9cc09204h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Degrasyn inhibits deubiquitination enzymes and has anti-cancer activity. We here show that it also exhibits antimicrobial activity against multi-resistant Staphylococcus aureus. Structure activity relationship studies demonstrate an important role of the electrophilic α-cyanoacrylamide moiety as a Michael acceptor. A suite of chemical proteomic techniques unraveled binding of this moiety to various cysteine residues of essential proteins in a reversibly covalent manner.
Collapse
Affiliation(s)
- Kyu Myung Lee
- Center for Integrated Protein Science, Department of Chemistry and Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany.
| | - Philipp Le
- Center for Integrated Protein Science, Department of Chemistry and Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany.
| | - Stephan A Sieber
- Center for Integrated Protein Science, Department of Chemistry and Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany.
| | - Stephan M Hacker
- Department of Chemistry, Technische Universität München, Garching bei München, Germany.
| |
Collapse
|
3
|
Koczian F, Nagło O, Vomacka J, Vick B, Servatius P, Zisis T, Hettich B, Kazmaier U, Sieber SA, Jeremias I, Zahler S, Braig S. Targeting the endoplasmic reticulum-mitochondria interface sensitizes leukemia cells to cytostatics. Haematologica 2018; 104:546-555. [PMID: 30309851 PMCID: PMC6395311 DOI: 10.3324/haematol.2018.197368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Combination chemotherapy has proven to be a favorable strategy to treat acute leukemia. However, the introduction of novel compounds remains challenging and is hindered by a lack of understanding of their mechanistic interactions with established drugs. In the present study, we demonstrate a highly increased response of various acute leukemia cell lines, drug-resistant cells and patient-derived xenograft cells by combining the recently introduced protein disulfide isomerase inhibitor PS89 with cytostatics. In leukemic cells, a proteomics-based target fishing approach revealed that PS89 affects a whole network of endoplasmic reticulum homeostasis proteins. We elucidate that the strong induction of apoptosis in combination with cytostatics is orchestrated by the PS89 target B-cell receptor-associated protein 31, which transduces apoptosis signals at the endoplasmic reticulum -mitochondria interface. Activation of caspase-8 and cleavage of B-cell receptor-associated protein 31 stimulate a pro-apoptotic crosstalk including release of calcium from the endoplasmic reticulum and an increase in the levels of reactive oxygen species resulting in amplification of mitochondrial apoptosis. The findings of this study promote PS89 as a novel chemosensitizing agent for the treatment of acute leukemia and uncovers that targeting the endoplasmic reticulum - mitochondrial network of cell death is a promising approach in combination therapy.
Collapse
Affiliation(s)
- Fabian Koczian
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| | - Olga Nagło
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| | - Jan Vomacka
- Department of Chemistry, Technical University of Munich, Garching
| | - Binje Vick
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health, Munich
| | - Phil Servatius
- Institute of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Themistoklis Zisis
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| | - Britta Hettich
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| | - Uli Kazmaier
- Institute of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Stephan A Sieber
- Department of Chemistry, Technical University of Munich, Garching
| | - Irmela Jeremias
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health, Munich
| | - Stefan Zahler
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| | - Simone Braig
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| |
Collapse
|
4
|
Hofbauer B, Vomacka J, Stahl M, Korotkov VS, Jennings MC, Wuest WM, Sieber SA. Dual Inhibitor of Staphylococcus aureus Virulence and Biofilm Attenuates Expression of Major Toxins and Adhesins. Biochemistry 2018; 57:1814-1820. [PMID: 29451388 DOI: 10.1021/acs.biochem.7b01271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Staphylococcus aureus is a major bacterial pathogen that invades and damages host tissue by the expression of devastating toxins. We here performed a phenotypic screen of 35 molecules that were structurally inspired by previous hydroxyamide-based S. aureus virulence inhibitors compiled from commercial sources or designed and synthesized de novo. One of the most potent compounds, AV73, not only reduced hemolytic alpha-hemolysin production in S. aureus but also impeded in vitro biofilm formation. The effect of AV73 on bacterial proteomes and extracellular protein levels was analyzed by quantitative proteomics and revealed a significant down-regulation of major virulence and biofilm promoting proteins. To elucidate the mode of action of AV73, target identification was performed using affinity-based protein profiling (AfBPP), where among others YidC was identified as a target.
Collapse
Affiliation(s)
- Barbara Hofbauer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Institute of Advanced Studies (IAS) , Technische Universität München (TUM) , Lichtenbergstraße 4 , D-85747 Garching , Germany
| | - Jan Vomacka
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Institute of Advanced Studies (IAS) , Technische Universität München (TUM) , Lichtenbergstraße 4 , D-85747 Garching , Germany
| | - Matthias Stahl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Institute of Advanced Studies (IAS) , Technische Universität München (TUM) , Lichtenbergstraße 4 , D-85747 Garching , Germany
| | - Vadim S Korotkov
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Institute of Advanced Studies (IAS) , Technische Universität München (TUM) , Lichtenbergstraße 4 , D-85747 Garching , Germany
| | - Megan C Jennings
- Department of Chemistry , Temple University , 1910 North 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - William M Wuest
- Department of Chemistry , Temple University , 1910 North 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Institute of Advanced Studies (IAS) , Technische Universität München (TUM) , Lichtenbergstraße 4 , D-85747 Garching , Germany
| |
Collapse
|
5
|
Shoham M, Greenberg M. Preventing the spread of infectious diseases: antivirulents versus antibiotics. Future Microbiol 2017; 12:365-368. [PMID: 28339290 DOI: 10.2217/fmb-2017-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Menachem Shoham
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael Greenberg
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Krysiak J, Stahl M, Vomacka J, Fetzer C, Lakemeyer M, Fux A, Sieber SA. Quantitative Map of β-Lactone-Induced Virulence Regulation. J Proteome Res 2017; 16:1180-1192. [DOI: 10.1021/acs.jproteome.6b00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Joanna Krysiak
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Matthias Stahl
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Jan Vomacka
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Christian Fetzer
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Markus Lakemeyer
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Anja Fux
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|