1
|
Ushakou D, Józefowicz M. Excitation wavelength-dependent fluorescence anisotropy of 3-hydroxyflavone: revisiting the solvation processes and high-energy state excitation in ESIPT-active compounds. Phys Chem Chem Phys 2024; 26:25029-25047. [PMID: 39301693 DOI: 10.1039/d4cp02493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
To gain a more comprehensive understanding of the phenomenon of high-fluorescence anisotropy of the normal form emission of ESIPT-active compounds in protic solvents, excitation wavelength dependence of emission anisotropy was investigated for 3-hydroxyflavone (3HF) using steady-state spectroscopic technique and quantum chemical calculations. It was shown for the first time that the anisotropy of 3HF normal form emission is characterized by significant dependence on excitation energy. Experimental results indicate that the fluorescence anisotropy of 3HF in methanol (at 20 °C) changes abruptly from about 0.18 to about 0.10 with a decrease in excitation wavelength. This spectroscopic phenomenon can be explained by two factors: (1) breaking of intermolecular solute-solvent hydrogen bonds upon photoexcitation and (2) excitation of ESIPT-active fluorophores to the second singlet state (S2). The results of quantum chemical calculations clearly indicate that specific hydrogen bonding solvation interactions can lead to the formation of 3HF-methanol complexes with larger molecular volumes than the volume of free 3HF molecule. High excitation energy can reform and break solute-solvent bonds, which leads to a decrease in molecular system volume. This results in a decrease in rotational correlation time and fluorescence anisotropy. As is known, the fluorescence lifetime of small-sized molecules is closely correlated with the conformational changes in the excited state, and in the case of ESIPT-active compounds, the lifetime of normal form emission is almost fully determined by the ultrafast ESIPT process. Therefore, although in general, fluorescence lifetime is considered independent of excitation energy, but because the timescale of ESIPT processes is of the same order as the timescale of internal conversion, in the case of ESIPT-active compounds, fluorescence lifetime changes caused by high-energy state excitation cannot be neglected. The emission anisotropy of the normal form of an ESIPT-active compound will decrease with an increase in fluorescence lifetime caused by an increase in excitation energy sufficient to excite molecules to higher electronic states. In this work, both hypotheses are discussed and verified using experimental data and quantum chemical calculations for 3HF in methanol.
Collapse
Affiliation(s)
- Dzmitryi Ushakou
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, str. Wita Stwosza 57, 80-308 Gdańsk, Poland.
- Institute of Exact and Technical Sciences, Pomeranian University in Słupsk, str. Arciszewskiego 22d, 76-200 Słupsk, Poland
| | - Marek Józefowicz
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, str. Wita Stwosza 57, 80-308 Gdańsk, Poland.
| |
Collapse
|
2
|
Stoerkler T, Ulrich G, Retailleau P, Laurent AD, Jacquemin D, Massue J. Experimental and theoretical comprehension of ESIPT fluorophores based on a 2-(2'-hydroxyphenyl)-3,3'-dimethylindole (HDMI) scaffold. Chem Sci 2024; 15:7206-7218. [PMID: 38756821 PMCID: PMC11095508 DOI: 10.1039/d4sc01937g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Excited-State Intramolecular Proton Transfer (ESIPT) emission is associated with intense single or multiple fluorescence in the solid-state, along with enhanced photostability and sensitivity to the close environment. As a result, ESIPT probes are attractive candidates for ratiometric sensing of a variety of substrates. A new family of ESIPT fluorophores is described herein, inspired by the well-known 2-(2'hydroxyphenyl)benzazole (HBX) organic scaffold. The connection of 3,3'-dimethylindole (or 3H-indole) derivatives with phenol rings triggers the formation of novel 2-(2'-hydroxyphenyl)-3,3'-dimethylindole (HDMI) fluorophores, capable of stimuli-responsive ESIPT emission. This brand new family of dyes displays redshifted emission, as compared to HBX, along with an unprecedented acid/base-mediated stabilization of different rotamers, owing to supramolecular interactions with methyl groups. These compounds are therefore highly sensitive to external stimuli, such as the presence of acid or base, where protonated and deprotonated species have specific optical signatures. Moreover, a new pyridine-functionalized HDMI dye displays acid-sensitive AIE properties. The photophysical properties of all compounds have also been studied using ab initio calculations to support experiments in deciphering the nature of the various radiative transitions observed and the related excited rotameric species.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Pascal Retailleau
- Service de Cristallographie Structurale, ICSN-CNRS, Université Paris-Saclay 1 Avenue de la Terrasse, Bât. 27 91198 Gif-sur-Yvette Cedex France
| | - Adèle D Laurent
- Nantes Université, CNRS CEISAM UMR 6230 F-44000 Nantes France
| | - Denis Jacquemin
- Nantes Université, CNRS CEISAM UMR 6230 F-44000 Nantes France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| |
Collapse
|
3
|
Wróblewski T, Ushakou D. Stepwise Excited-state Double Proton Transfer and Fluorescence Decay Analysis. J Fluoresc 2023; 33:103-111. [PMID: 36271973 PMCID: PMC9892138 DOI: 10.1007/s10895-022-03042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2022] [Indexed: 02/05/2023]
Abstract
This work considers excited state intramolecular proton transfers (ESIPT) occurred in multiple hydroxyl-containing compounds with one proton transfer site in the normal form. If several hydroxyl groups are located close to each other in a molecule, then the ESIPT process can lead to the next one. A proton donor site in the first ESIPT will be a proton acceptor during the second reaction. Therefore, a number of consecutive excited state proton transfers can occur. This work deals with the case of two successive proton transfers occurred in the molecular system. Such process is called as a stepwise excited state intramolecular double proton transfer (stepwise ESIDPT). It leads to the formation of two molecular tautomers. Therefore, fluorescence of such compounds can contain different emission bands correspond to emission of normal form and two tautomers. In this work, a rigorous analysis of fluorescence decay kinetics has been made using the model with three species, including a normal molecular form and two tautomers. The work presents theoretical framework of fluorescence decay analysis of ESIDPT process taking into account three species emission. Theoretically, the stepwise proton transfers can be consisted of more than two ESIPT reactions. It depends on molecular structure and number of involved hydroxyl groups. Here, a formal analysis of fluorescence decay kinetics has been made in the case of a stepwise process consisting of two proton transfers. Moreover, the quantum-chemical calculations have been performed in the case of scutellarein. It is a multiple hydroxyl-containing flavone and, therefore, it can be applied as a model molecule to study stepwise intramolecular proton transfers. The hypothetical scheme of ESIDPT has been proposed for this compound.
Collapse
Affiliation(s)
- Tomasz Wróblewski
- Institute of Exact and Technical Sciences, Pomeranian University in Słupsk, str. Arciszewskiego 22b, Słupsk, 76-200, Poland
| | - Dzmitryi Ushakou
- Institute of Exact and Technical Sciences, Pomeranian University in Słupsk, str. Arciszewskiego 22b, Słupsk, 76-200, Poland.
| |
Collapse
|
4
|
Zhang Z, Huang Y, Bai Q, Wu T, Jiang Z, Su H, Zong Y, Wang M, Su PY, Xie TZ, Wang P. Aggregation-Induced Emission Metallocuboctahedra for White Light Devices. JACS AU 2022; 2:2809-2820. [PMID: 36590262 PMCID: PMC9795569 DOI: 10.1021/jacsau.2c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Materials for organic light-emitting devices which exhibit superior emission properties in both the solution and solid states with a high fluorescence quantum yield have been extensively sought after. Herein, two metallocages, S1 and S2, were constructed, and both showed typical aggregation-induced emission (AIE) features with intense yellow fluorescence. By adding blue-emissive 9,10-dimethylanthracene, pure white light emission can be produced in the solution of S1 and S2. Furthermore, due to the remarkable AIE feature and good fluorescence quantum yield in the solid state, metallocages are highly emissive in the solid state and can be utilized to coat blue LED bulbs or integrate with blue-emitting chips to obtain white light. This study advances the usage of metallocages as practical solid-state fluorescent materials and provides a fresh perspective on highly emissive AIE materials.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Yan Huang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Qixia Bai
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Tun Wu
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiyuan Jiang
- Hunan
Key Laboratory of Micro & Nano Materials Interface Science; College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, China
| | - Haoyue Su
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Yingxin Zong
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Ming Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Pei-Yang Su
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Ting-Zheng Xie
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Pingshan Wang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
- Hunan
Key Laboratory of Micro & Nano Materials Interface Science; College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, China
| |
Collapse
|
5
|
Shekhovtsov NA, Bushuev MB. Enol or keto? Interplay between solvents and substituents as a factor controlling ESIPT. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Munch M, Ulrich G, Massue J. Synthesis and Optical Properties of Excited-State Intramolecular Proton Transfer (ESIPT) Emitters with Sulfobetaine Fragments. Org Biomol Chem 2022; 20:4640-4649. [PMID: 35612088 DOI: 10.1039/d2ob00691j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes the synthetic efforts towards the solubilization of organic fluorescent emitters based on a 2-(2'-hydroxybenzofuranyl)benzazole (HBBX) scaffold in aqueous media under physiological conditions (PBS, pH 7.4). These dyes are well-known to display the excited-state intramolecular proton transfer (ESIPT) process which leads to a Stokes-shifted fluorescence with enhanced photostability and strong environment dependent features. Organic dyes are hydrophobic by nature and their vectorization into aqueous media usually necessitates amphiphilic polymers. In this study, we show that the incorporation of one or two sulfobetaine fragments, a highly biocompatible zwitterionic unit leads to the vectorization in buffer solution at pH 7.4 while keeping a reasonable ESIPT fluorescence emission. The photophysical properties of all dyes were studied in multiple solvents and showed that, depending on structure and environment, different excited-state species are observed: normal or tautomeric species, as well as a competitive anionic fluorescent derivative. This study shows that it is not only possible to solubilize fluorescent ESIPT dyes in water using sulfobetaine(s) but also that the optical properties can be finely tuned depending on small structural inputs.
Collapse
Affiliation(s)
- Maxime Munch
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France.
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France.
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France.
| |
Collapse
|
7
|
Stoerkler T, Pariat T, Laurent AD, Jacquemin D, Ulrich G, Massue J. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules 2022; 27:molecules27082443. [PMID: 35458640 PMCID: PMC9024454 DOI: 10.3390/molecules27082443] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emission both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal, polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluorescent dyes which typically show intense fluorescence in solution but are quenched in concentrated media and in the solid-state owing to π-stacking interactions; a well-known phenomenon called aggregation-caused quenching (ACQ). On the contrary, molecular rotors with a significant number of free rotations have been engineered to show quenched emission in solution but strong fluorescence in the aggregated-state thanks to restriction of the intramolecular motions. This is the concept of aggregation-induced emission (AIE). DSE fluorophores have been far less explored despite the fact that they are at the crossroad of ACQ and AIE phenomena and allow targeting applications both in solution (bio-conjugation, sensing, imaging) and solid-state (organic electronics, data encryption, lasing, luminescent displays). Excited-State Intramolecular Proton Transfer (ESIPT) fluorescence is particularly suitable to engineer DSE dyes. Indeed, ESIPT fluorescence, which relies on a phototautomerism between normal and tautomeric species, is characterized by a strong emission in the solid-state along with a large Stokes’ shift, an enhanced photostability and a strong sensitivity to the close environment, a feature prone to be used in bio-sensing. A drawback that needs to be overcome is their weak emission intensity in solution, owing to detrimental molecular motions in the excited-state. Several strategies have been proposed in that regard. In the past few years, a growing number of examples of DSE-ESIPT dyes have indeed emerged in the literature, enriching the database of such attractive dyes. This review aims at a brief but concise overview on the exploitation of ESIPT luminescence for the optimization of DSE dyes properties. In that perspective, a synergistic approach between organic synthesis, fluorescence spectroscopy and ab initio calculations has proven to be an efficient tool for the construction and optimization of DSE-ESIPT fluorophores.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Thibault Pariat
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Adèle D. Laurent
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
| | - Denis Jacquemin
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
- Correspondence: (D.J.); (J.M.)
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Julien Massue
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
- Correspondence: (D.J.); (J.M.)
| |
Collapse
|
8
|
Pariat T, Stoerkler T, Diguet C, Laurent AD, Jacquemin D, Ulrich G, Massue J. Dual Solution-/Solid-State Emissive Excited-State Intramolecular Proton Transfer (ESIPT) Dyes: A Combined Experimental and Theoretical Approach. J Org Chem 2021; 86:17606-17619. [PMID: 34846147 DOI: 10.1021/acs.joc.1c01698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excited-state intramolecular proton transfer (ESIPT) dyes typically show strong solid-state emission, but faint fluorescence intensity is observed in the solution state owing to detrimental molecular motions. This article investigates the influence of direct (hetero)arylation on the optical properties of 2-(2'-hydroxyphenyl)benzoxazole ESIPT emitters. The synthesis of two series of ESIPT emitters bearing substituted neutral or charged aryl, thiophene, or pyridine rings is reported herein along with full photophysical studies in solution and solid states, demonstrating the dual solution-/solid-state emission behavior. Depending on the nature of substitution, several excited-state dynamics are observed: quantitative or partially frustrated ESIPT process or deprotonation of the excited species. Protonation studies revealed that pyridine substitution triggered a strong increase of quantum yield in the solution state for the protonated species owing to favorable quinoidal stabilization. These attractive features led to the development of a second series of dyes with alkyl or aryl pyridinium moieties showing strong tunable solution/solid fluorescence intensity. For each series, ab initio calculations helped rationalize and ascertain their behavior in the excited state and the nature of the emission observed by the experimental results.
Collapse
Affiliation(s)
- Thibault Pariat
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Clément Diguet
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Adèle D Laurent
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Denis Jacquemin
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
9
|
Grabarz AM, Ośmiałowski B. Benchmarking Density Functional Approximations for Excited-State Properties of Fluorescent Dyes. Molecules 2021; 26:7434. [PMID: 34946515 PMCID: PMC8703901 DOI: 10.3390/molecules26247434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 12/05/2022] Open
Abstract
This study presents an extensive analysis of the predictive power of time-dependent density functional theory in determining the excited-state properties of two groups of important fluorescent dyes, difluoroboranes and hydroxyphenylimidazo[1,2-a]pyridine derivatives. To ensure statistically meaningful results, the data set is comprised of 85 molecules manifesting diverse photophysical properties. The vertical excitation energies and dipole moments (in the electronic ground and excited states) of the aforementioned dyes were determined using the RI-CC2 method (reference) and with 18 density functional approximations (DFA). The set encompasses DFAs with varying amounts of exact exchange energy (EEX): from 0% (e.g., SVWN, BLYP), through a medium (e.g., TPSSh, B3LYP), up to a major contribution of EEX (e.g., BMK, MN15). It also includes range-separated hybrids (CAM-B3LYP, LC-BLYP). Similar error profiles of vertical energy were obtained for both dye groups, although the errors related to hydroxyphenylimidazopiridines are significantly larger. Overall, functionals including 40-55% of EEX (SOGGA11-X, BMK, M06-2X) ensure satisfactory agreement with the reference vertical excitation energies obtained using the RI-CC2 method; however, MN15 significantly outperforms them, providing a mean absolute error of merely 0.04 eV together with a very high correlation coefficient (R2 = 0.98). Within the investigated set of functionals, there is no single functional that would equally accurately determine ground- and excited-state dipole moments of difluoroboranes and hydroxyphenylimidazopiridine derivatives. Depending on the chosen set of dyes, the most accurate μGS predictions were delivered by MN15 incorporating a major EEX contribution (difluoroboranes) and by PBE0 containing a minor EEX fraction (hydroxyphenylimidazopiridines). Reverse trends are observed for μES, i.e., for difluoroboranes the best results were obtained with functionals including a minor fraction of EEX, specifically PBE0, while in the case of hydroxyphenylimidazopiridines, much more accurate predictions were provided by functionals incorporating a major EEX contribution (BMK, MN15).
Collapse
Affiliation(s)
- Anna M. Grabarz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, PL-87100 Toruń, Poland;
| |
Collapse
|
10
|
Stoerkler T, Frath D, Jacquemin D, Massue J, Ulrich G. Dual‐State Emissive π‐Extended Salicylaldehyde Fluorophores: Synthesis, Photophysical Properties and First‐Principle Calculations. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Denis Frath
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
- Université de Lyon, ENS de Lyon, CNRS UMR 5182 Laboratoire de Chimie 69342 Lyon France
| | | | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| |
Collapse
|
11
|
Qi SL, Li Y, Li JF, Zhang T, Luan YX, Ye M. Ni-Catalyzed Dual C-H Annulation of Benzimidazoles with Alkynes for Synthesis of π-Extended Heteroarenes. Org Lett 2021; 23:4034-4039. [PMID: 33970650 DOI: 10.1021/acs.orglett.1c01253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metal catalyzed dual C-H activation and annulation with alkynes was an attractive protocol to construct polycyclic π-extended structures. However, most of them were dominated by noble metal catalysts. Disclosed herein was the study of base-metal Ni-catalysis for dual C-H annulation of N-aromatic imidazole, which produced a range of desired polycyclic aza-quinolines in 48-95% yields. The use of bifunctional phosphine oxide ligand proved to be critical for success.
Collapse
Affiliation(s)
- Shao-Long Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Shaydyuk Y, Bashmakova NV, Dmytruk AM, Kachkovsky OD, Koniev S, Strizhak AV, Komarov IV, Belfield KD, Bondar MV, Babii O. Nature of Fast Relaxation Processes and Spectroscopy of a Membrane-Active Peptide Modified with Fluorescent Amino Acid Exhibiting Excited State Intramolecular Proton Transfer and Efficient Stimulated Emission. ACS OMEGA 2021; 6:10119-10128. [PMID: 34056166 PMCID: PMC8153670 DOI: 10.1021/acsomega.1c00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A fluorescently labeled peptide that exhibited fast excited state intramolecular proton transfer (ESIPT) was synthesized, and the nature of its electronic properties was comprehensively investigated, including linear photophysical and photochemical characterization, specific relaxation processes in the excited state, and its stimulated emission ability. The steady-state absorption, fluorescence, and excitation anisotropy spectra, along with fluorescence lifetimes and emission quantum yields, were obtained in liquid media and analyzed based on density functional theory quantum-chemical calculations. The nature of ESIPT processes of the peptide's chromophore moiety was explored using a femtosecond transient absorption pump-probe technique, revealing relatively fast ESIPT velocity (∼10 ps) in protic MeOH at room temperature. Efficient superluminescence properties of the peptide were realized upon femtosecond excitation in the main long-wavelength absorption band with a corresponding threshold of the pump pulse energy of ∼1.5 μJ. Quantum-chemical analysis of the electronic structure of the peptide was performed using the density functional theory/time-dependent density functional theory level of theory, affording good agreement with experimental data.
Collapse
Affiliation(s)
- Yevgeniy
O. Shaydyuk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Nataliia V. Bashmakova
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy M. Dmytruk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Olexiy D. Kachkovsky
- V.P.
Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the
National Academy of Sciences, Murmanskaya Street 1, Kyiv 02660, Ukraine
| | - Serhii Koniev
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | | | - Igor V. Komarov
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Kevin D. Belfield
- New
Jersey Institute of Technology, College of Science and Liberal Arts, University Heights, Newark, New Jersey 07102, United States
| | - Mykhailo V. Bondar
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Oleg Babii
- Institute
of Biological Interfaces (IBG-2), Karlsruhe
Institute of Technology (KIT), POB3640, Karlsruhe 76021, Germany
| |
Collapse
|
13
|
Keshri SK, Mandal K, Kumar Y, Yadav D, Mukhopadhyay P. Naphthalenediimides with High Fluorescence Quantum Yield: Bright-Red, Stable, and Responsive Fluorescent Dyes. Chemistry 2021; 27:6954-6962. [PMID: 33539577 DOI: 10.1002/chem.202100020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Indexed: 12/22/2022]
Abstract
The naphthalenediimide (NDI) scaffold in contrast to its higher congeners possess low-fluorescence. In spite of elegant synthetic developments, a highly emissive NDI is quite rare to find, as well as, a green-light-emitting NDI is yet to be explored. Herein, we report a novel class of symmetric and asymmetric NH2 -substituted core-NDIs (1-5) with tunable fluorescence in the visible region and extending to the NIR frontier. Importantly, the bis-NH2 -substituted NDI 2 revealed quantum yield, Φ f of ≈81 and ≈68 % in toluene and DMSO, respectively, suggesting versatility of the fluorophore in a wide range of solvent polarity. The dye 1 is shown to be the first NDI-based green-light emitter. The donor piperidine group in 5 diminish the Φ f by 40-fold providing a lever to modulate the excited-state intramolecular proton transfer (ESIPT) process. Our synthetic protocol applies a Pd catalyst and a benign hydride source simplifying the non-trivial -NH2 group integration at the NDI-core. TD-DFT calculations predicted strong intramolecular hydrogen bonds in the excited state in the bulk nonpolar medium and responsiveness to solvent polarity. The maximization of the NDI emission outlined here would further boost the burgeoning repertoire of applications of the NDI scaffold.
Collapse
Affiliation(s)
- Sudhir Kumar Keshri
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kalyanashis Mandal
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Yogendra Kumar
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Devendra Yadav
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
14
|
Pariat T, Munch M, Durko-Maciag M, Mysliwiec J, Retailleau P, Vérité PM, Jacquemin D, Massue J, Ulrich G. Impact of Heteroatom Substitution on Dual-State Emissive Rigidified 2-(2'-hydroxyphenyl)benzazole Dyes: Towards Ultra-Bright ESIPT Fluorophores*. Chemistry 2021; 27:3483-3495. [PMID: 33191573 DOI: 10.1002/chem.202004767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 01/09/2023]
Abstract
2-(2'-Hydroxyphenyl)benzazole (HBX) fluorophores are well-known excited-state intramolecular proton transfer (ESIPT) emitters largely studied for their synthetic versatility, photostability, strong solid-state fluorescence and ability to engineer dual emission, thus paving the way to applications as white emitters, ratiometric sensors, and cryptographic dyes. However, they are heavily quenched in solution, due to efficient non-radiative pathways taking place as a consequence of the proton transfer in the excited-state. In this contribution, the nature of the heteroring constitutive of these rigidified HBX dyes was modified and we demonstrate that this simple structural modification triggers major optical changes in terms of emission color, dual emission engineering, and importantly, fluorescent quantum yield. Investigation of the photophysical properties in solution and in the solid state of a series of ethynyl-TIPS extended HBX fluorophores, along with ab initio calculations demonstrate the very promising abilities of these dyes to act as bright dual-state emitters, in both solution (even in protic environments) and solid state.
Collapse
Affiliation(s)
- Thibault Pariat
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Maxime Munch
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Martyna Durko-Maciag
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France.,Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50370, Wroclaw, Poland
| | - Jaroslaw Mysliwiec
- Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50370, Wroclaw, Poland
| | - Pascal Retailleau
- Laboratoire de Cristallochimie, ICSN-CNRS, 1 Avenue de la Terrasse, Bât. 27, 91198, Gif-sur-Yvette Cedex, France
| | - Pauline M Vérité
- CEISAM Lab-UMR 6230-CNRS and University of Nantes, 2 Rue de la Houssinière, 44322, Nantes, France
| | - Denis Jacquemin
- CEISAM Lab-UMR 6230-CNRS and University of Nantes, 2 Rue de la Houssinière, 44322, Nantes, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| |
Collapse
|
15
|
Trannoy V, Léaustic A, Gadan S, Guillot R, Allain C, Clavier G, Mazerat S, Geffroy B, Yu P. A highly efficient solution and solid state ESIPT fluorophore and its OLED application. NEW J CHEM 2021. [DOI: 10.1039/d0nj05600f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Readily accessible and functionalized ESIPT dyes with high fluorescence quantum yield in solution, including water, and in crystalline state are presented.
Collapse
Affiliation(s)
- Virgile Trannoy
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| | - Anne Léaustic
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| | - Sophie Gadan
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| | - Régis Guillot
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| | - Clémence Allain
- Université Paris-Saclay
- ENS Paris-Saclay
- CNRS
- PPSM
- 91190 Gif-sur-Yvette
| | - Gilles Clavier
- Université Paris-Saclay
- ENS Paris-Saclay
- CNRS
- PPSM
- 91190 Gif-sur-Yvette
| | - Sandra Mazerat
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| | | | - Pei Yu
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Orsay
- France
| |
Collapse
|
16
|
Zhang W, Suzuki S, Sakurai T, Yoshida H, Tsutsui Y, Ozaki M, Seki S. Extended conjugation of ESIPT-type dopants in nematic liquid crystalline phase for enhancing fluorescence efficiency and anisotropy. Phys Chem Chem Phys 2020; 22:28393-28400. [PMID: 33305298 DOI: 10.1039/d0cp05415a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organic compounds capable of excited-state intramolecular proton transfer (ESIPT) show fluorescence with a large Stokes shift and serve as solid-state emitters, luminescent dopants, and fluorescence-based sensing materials. Fluorescence of ESIPT molecules is usually increased in the solid state, but is weak in solvents due to the accelerated non-radiative decays by rotational motions of a part of the molecular core in these environments. Here we report, using a representative ESIPT motif 2-(2-hydroxyphenyl)benzothiazole (HBT), the extended-conjugation strategy of keeping sufficient fluorescence efficiency both in the solid state and in organic media. The introduction of an alkyl-terminated phenylene-ethynylene group into the HBT molecule dramatically enhances the fluorescence quantum yield from 0.01 to 0.20 in toluene and from 0.07 to 0.32 in a representative room-temperature nematic liquid crystal, 4-pentyl-4'-cyano biphenyl (5CB). The newly-synthesized CnP-C[triple bond, length as m-dash]C-HBT (n = 5 or 8) serves as a fluorescent dopant in 5CB and exhibits anisotropic fluorescence with the order parameter of 0.48, where the luminescence is controlled by the applied electric-field. The enhanced emission efficiency is rationalized by the larger height of energy barrier for the ESIPT process due to the introduction of phenylene-ethynylene groups.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Togasaki K, Arai T, Nishimura Y. Effect of Moderate Hydrogen Bonding on Tautomer Formation via Excited-State Intermolecular Proton-Transfer Reactions in an Aromatic Urea Compound with a Steric Base. J Phys Chem A 2020; 124:6617-6628. [PMID: 32786662 DOI: 10.1021/acs.jpca.0c05045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), which forms weak hydrogen bonds despite the high basicity caused by its hindered structure, was used to investigate tautomer formation via excited-state intermolecular proton-transfer (ESPT) reactions. The kinetics of the ESPT reactions of anthracen-2-yl-3-phenylurea (2PUA) in the presence of DBU were compared to that observed for the acetate anion (Ac) using time-resolved fluorescence measurement. Based on the association constants in the ground state, the intermolecular hydrogen bond between 2PUA and DBU was less stable than the bond between 2PUA and Ac due to steric hindrance and the geometry of the hydrogen bond. In the fluorescence spectra, 2PUA-DBU displayed prominent tautomeric emission in chloroform (CHCl3), whereas 2PUA-Ac exhibited distinct tautomeric emissions in dimethyl sulfoxide (DMSO). Kinetic analysis revealed that the rate constant of the ESPT reaction of 2PUA-DBU remarkably decreased when the proton-accepting ability of the solvent increased whereas the reaction of 2PUA-Ac was linked to the solvent polarity rather than proton-accepting ability. These results indicated that moderate hydrogen bonds due to steric hindrance were influenced by the type of solvent present, particularly if the solvents exhibited proton-accepting capabilities like DMSO. This, in turn, affected the rate constant of tautomer formation.
Collapse
Affiliation(s)
- Kei Togasaki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuo Arai
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
19
|
Skonieczny K, Espinoza EM, Derr JB, Morales M, Clinton JM, Xia B, Vullev VI. Biomimetic and bioinspired molecular electrets. How to make them and why does the established peptide chemistry not always work? PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract“Biomimetic” and “bioinspired” define different aspects of the impacts that biology exerts on science and engineering. Biomimicking improves the understanding of how living systems work, and builds tools for bioinspired endeavors. Biological inspiration takes ideas from biology and implements them in unorthodox manners, exceeding what nature offers. Molecular electrets, i.e. systems with ordered electric dipoles, are key for advancing charge-transfer (CT) science and engineering. Protein helices and their biomimetic analogues, based on synthetic polypeptides, are the best-known molecular electrets. The inability of native polypeptide backbones to efficiently mediate long-range CT, however, limits their utility. Bioinspired molecular electrets based on anthranilamides can overcome the limitations of their biological and biomimetic counterparts. Polypeptide helices are easy to synthesize using established automated protocols. These protocols, however, fail to produce even short anthranilamide oligomers. For making anthranilamides, the residues are introduced as their nitrobenzoic-acid derivatives, and the oligomers are built from their C- to their N-termini via amide-coupling and nitro-reduction steps. The stringent requirements for these reduction and coupling steps pose non-trivial challenges, such as high selectivity, quantitative yields, and fast completion under mild conditions. Addressing these challenges will provide access to bioinspired molecular electrets essential for organic electronics and energy conversion.
Collapse
Affiliation(s)
- Kamil Skonieczny
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - James B. Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Maryann Morales
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Jillian M. Clinton
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Bing Xia
- GlaxoSmithKline, 200 Cambridgepark Dr., Cambridge, MA 02140, USA
| | - Valentine I. Vullev
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
20
|
Natural Born Laser Dyes: Excited-State Intramolecular Proton Transfer (ESIPT) Emitters and Their Use in Random Lasing Studies. NANOMATERIALS 2019; 9:nano9081093. [PMID: 31366091 PMCID: PMC6723810 DOI: 10.3390/nano9081093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 01/10/2023]
Abstract
A series of five excited-state intramolecular proton transfer (ESIPT) emitters based on a 2-(2′-hydroxyphenyl) benzoxazole (HBO) scaffold, functionalized with a mono-or bis-(trialkylsilyl) acetylene extended spacer are presented. Investigation of their photophysical properties in solution and in the solid-state in different matrix, along with ab initio calculations gave useful insights into their optical behavior. Random lasing studies were conducted on a series of PMMA doped thin films, showing the presence of stimulated emission above the threshold of pumping energy density (ρth ≈ 0.5–2.6 mJ cm−2). In this work, the similarity of four level laser systems is discussed in light of the ESIPT photocycle.
Collapse
|
21
|
Melekhina VG, Mityanov VS, Lichitsky BV, Komogortsev AN, Fakhrutdinov AN, Daeva ED, Krayushkin MM. Ultraviolet irradiation of terarylenes: A facile, efficient, and environmentally friendly method for the synthesis of fused polycyclic products. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Espinoza EM, Bao D, Krzeszewski M, Gryko DT, Vullev VI. Is it common for charge recombination to be faster than charge separation? INT J CHEM KINET 2019. [DOI: 10.1002/kin.21285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Eli M. Espinoza
- Department of Chemistry University of California Riverside California
| | - Duoduo Bao
- Department of Bioengineering University of California Riverside California
| | - Maciej Krzeszewski
- Department of Bioengineering University of California Riverside California
- Instytut Chemii Organicznej Polskiej Akademii Nauk Warsaw Poland
| | - Daniel T. Gryko
- Instytut Chemii Organicznej Polskiej Akademii Nauk Warsaw Poland
| | - Valentine I. Vullev
- Department of Chemistry University of California Riverside California
- Department of Bioengineering University of California Riverside California
- Department of Biochemistry University of California Riverside California
- Materials Science and Engineering Program University of California Riverside California
- Instituto de Química Universidade de São Paulo Cidade Universitária São Paulo Brazil
| |
Collapse
|
23
|
Felouat A, Curtil M, Massue J, Ulrich G. Excited-state intramolecular proton transfer (ESIPT) emitters based on a 2-(2′-hydroxybenzofuranyl)benzoxazole (HBBO) scaffold functionalised with oligo(ethylene glycol) (OEG) chains. NEW J CHEM 2019. [DOI: 10.1039/c9nj00809h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes the multi-step synthesis of 2-(2′-hydroxybenzofuran)benzoxazole (HBBO) derivatives functionalised with one to three oligo(ethylene glycol) (OEG) chains with the goal to allow a good vectorization in aqueous media.
Collapse
Affiliation(s)
- Abdellah Felouat
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 02
- France
| | - Mathieu Curtil
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 02
- France
| | - Julien Massue
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 02
- France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 02
- France
| |
Collapse
|
24
|
Xia D, Duan C, Liu S, Ding D, Baumgarten M, Wagner M, Schollmeyer D, Xu H, Müllen K. Oligofluorene with multiple spiro-connections: its and their use in blue and white OLEDs. NEW J CHEM 2019. [DOI: 10.1039/c8nj06135a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This work reports the synthesis and characterization of super rigid oligofluorenes. We also demonstrate their applications in blue and white OLEDs.
Collapse
Affiliation(s)
- Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology
- 150001 Harbin
- China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University
- 150080 Harbin
- China
| | - Shihui Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology
- 150001 Harbin
- China
| | - Dongxue Ding
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University
- 150080 Harbin
- China
| | | | - Manfred Wagner
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | | | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University
- 150080 Harbin
- China
| | - Klaus Müllen
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
25
|
Ito S, Nishimoto C, Nagai S. Sequential halochromic/mechanochromic luminescence of pyridyl-substituted solid-state emissive dyes: thermally controlled stepwise recovery of the original emission color. CrystEngComm 2019. [DOI: 10.1039/c9ce01037h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stepwise temperature-controlled emission-color switch has been achieved in a system that combines halochromic and mechanochromic luminescence in series.
Collapse
Affiliation(s)
- Suguru Ito
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Chika Nishimoto
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Sayaka Nagai
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| |
Collapse
|
26
|
Munch M, Curtil M, Vérité PM, Jacquemin D, Massue J, Ulrich G. Ethynyl-Tolyl Extended 2-(2′-Hydroxyphenyl)benzoxazole Dyes: Solution and Solid-state Excited-State Intramolecular Proton Transfer (ESIPT) Emitters. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801590] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maxime Munch
- UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM); Institut de Chimie et Procédés pour l′Energie, l′Environnement et la Santé (ICPEES); 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Mathieu Curtil
- UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM); Institut de Chimie et Procédés pour l′Energie, l′Environnement et la Santé (ICPEES); 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Pauline M. Vérité
- CEISAM, UMR CNRS 6230, BP 92208; 2 rue de la Houssinière 44322 Nantes, Cedex 03 France
| | - Denis Jacquemin
- CEISAM, UMR CNRS 6230, BP 92208; 2 rue de la Houssinière 44322 Nantes, Cedex 03 France
| | - Julien Massue
- UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM); Institut de Chimie et Procédés pour l′Energie, l′Environnement et la Santé (ICPEES); 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Gilles Ulrich
- UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM); Institut de Chimie et Procédés pour l′Energie, l′Environnement et la Santé (ICPEES); 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| |
Collapse
|
27
|
Huh JH, Pandith A, Cho CS, Kim H. Electronically‐tuned 2‐(2′‐Hydroxyphenyl)‐4‐pyrenylthiazole through Bond Energy Transfer Donor–Acceptor Couples: Sensing and Biological Applications. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Joon Hyuk Huh
- Department of Applied Chemistry, School of Applied Chemical EngineeringKyungpook National University Daegu 41566 Republic of Korea
| | - Anup Pandith
- Department of Applied Chemistry, School of Applied Chemical EngineeringKyungpook National University Daegu 41566 Republic of Korea
| | - Chan Sik Cho
- Department of Applied Chemistry, School of Applied Chemical EngineeringKyungpook National University Daegu 41566 Republic of Korea
| | - Hong‐Seok Kim
- Department of Applied Chemistry, School of Applied Chemical EngineeringKyungpook National University Daegu 41566 Republic of Korea
| |
Collapse
|
28
|
Meisner QJ, Younes AH, Yuan Z, Sreenath K, Hurley JJM, Zhu L. Excitation-Dependent Multiple Fluorescence of a Substituted 2-(2'-Hydroxyphenyl)benzoxazole. J Phys Chem A 2018; 122:9209-9223. [PMID: 30411891 DOI: 10.1021/acs.jpca.8b07988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Excitation-dependent multiple fluorescence of a 2-(2'-hydroxyphenyl)benzoxazole (HBO) derivative (1) is described. Compound 1 contains the structure of a charge-transfer (CT) 4-hydroxyphenylvinylenebipy fluorophore and an excited-state intramolecular proton transfer capable (ESIPT-capable) HBO component that intersect at the hydroxyphenyl moiety. Therefore, both CT and ESIPT pathways, while spatially mostly separated, are available to the excited state of 1. The ESIPT process offers two emissive isomeric structures (enol and keto) of 1 in the excited state, while the susceptibility of 1 to a base adds another option to tune the composite emission color. In addition to the ground-state acid-base equilibrium that can be harnessed for the control of emission color by excitation energy, compound 1 exhibits excitation-dependent emission that is attributed to solvent-affected ground-state structural changes. Therefore, depending on the medium and excitation wavelength, the emission from the enol, keto, and anion forms could occur simultaneously, which are in the color ranges of blue, green, and orange/red, respectively. A composite color of white with CIE coordinates of (0.33, 0.33) can be materialized through judicious choices of medium and excitation wavelength.
Collapse
Affiliation(s)
- Quinton J Meisner
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306-4390 , United States
| | - Ali H Younes
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306-4390 , United States
| | - Zhao Yuan
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306-4390 , United States
| | - Kesavapillai Sreenath
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306-4390 , United States
| | - Joseph J M Hurley
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306-4390 , United States
| | - Lei Zhu
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306-4390 , United States
| |
Collapse
|
29
|
Derr JB, Tamayo J, Espinoza EM, Clark JA, Vullev VI. Dipole-induced effects on charge transfer and charge transport. Why do molecular electrets matter? CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Charge transfer (CT) and charge transport (CTr) are at the core of life-sustaining biological processes and of processes that govern the performance of electronic and energy-conversion devices. Electric fields are invaluable for guiding charge movement. Therefore, as electrostatic analogues of magnets, electrets have unexplored potential for generating local electric fields for accelerating desired CT processes and suppressing undesired ones. The notion about dipole-generated local fields affecting CT has evolved since the middle of the 20th century. In the 1990s, the first reports demonstrating the dipole effects on the kinetics of long-range electron transfer appeared. Concurrently, the development of molecular-level designs of electric junctions has led the exploration of dipole effects on CTr. Biomimetic molecular electrets such as polypeptide helices are often the dipole sources in CT systems. Conversely, surface-charge electrets and self-assembled monolayers of small polar conjugates are the preferred sources for modifying interfacial electric fields for controlling CTr. The multifaceted complexity of such effects on CT and CTr testifies for the challenges and the wealth of this field that still remains largely unexplored. This review outlines the basic concepts about dipole effects on CT and CTr, discusses their evolution, and provides accounts for their future developments and impacts.
Collapse
Affiliation(s)
- James B. Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Jesse Tamayo
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - John A. Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Valentine I. Vullev
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
30
|
Dwivedi BK, Singh VD, Paitandi RP, Pandey DS. Substituent-directed ESIPT-coupled Aggregation-induced Emission in Near-infrared-emitting Quinazoline Derivatives. Chemphyschem 2018; 19:2672-2682. [DOI: 10.1002/cphc.201800579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Bhupendra Kumar Dwivedi
- Department of Chemistry; Institute of Science; Banaras Hindu University; Varanasi - 221 005, (U. P. India
| | - Vishwa Deepak Singh
- Department of Chemistry; Institute of Science; Banaras Hindu University; Varanasi - 221 005, (U. P. India
| | - Rajendra Prasad Paitandi
- Department of Chemistry; Institute of Science; Banaras Hindu University; Varanasi - 221 005, (U. P. India
| | - Daya Shankar Pandey
- Department of Chemistry; Institute of Science; Banaras Hindu University; Varanasi - 221 005, (U. P. India
| |
Collapse
|
31
|
Phenanthro[9′,10′:4,5]imidazo[2,1-a]isoquinoline derivatives containing phenoxazine moiety: Synthesis and photophysical properties. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Suzuki N, Suda K, Yokogawa D, Kitoh-Nishioka H, Irle S, Ando A, Abegão LMG, Kamada K, Fukazawa A, Yamaguchi S. Near infrared two-photon-excited and -emissive dyes based on a strapped excited-state intramolecular proton-transfer (ESIPT) scaffold. Chem Sci 2018; 9:2666-2673. [PMID: 29719675 PMCID: PMC5897875 DOI: 10.1039/c8sc00066b] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Fluorophores that can undergo excited-state intramolecular proton transfer (ESIPT) represent promising scaffolds for the design of compounds that show red-shifted fluorescence. Herein, we disclose new near infrared-emissive materials based on a dialkylamine-strapped 2,5-dithienylpyrrole as an ESIPT scaffold. The introduction of electron-accepting units to the terminal positions of this scaffold generates acceptor-π-donor-π-acceptor (A-π-D-π-A) type π-conjugated compounds. Following the ESIPT, the electron-donating ability of the core scaffold increases, which results in a substantially red-shifted emission in the NIR region, while increasing the oscillator strength. The electron-accepting units play a vital role to achieve intense and red-shifted emission from the ESIPT state. The strapped dialkylamine chain that forms an intramolecular hydrogen bond is also essential to induce the ESIPT. Moreover, an extended A-π-D-π-A skeleton enables two-photon excitation with the NIR light. One of the derivatives that satisfy these features, i.e., borylethenyl-substituted 5, exhibited an intense NIR emission in polar solvents such as acetone (λem = 708 nm, ΦF = 0.55) with a strong two-photon-absorption band in the NIR region.
Collapse
Affiliation(s)
- Naoya Suzuki
- Department of Chemistry , Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Japan
| | - Kayo Suda
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Furo, Chikusa , Nagoya , 464-8602 , Japan
| | - Daisuke Yokogawa
- Department of Chemistry , Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Furo, Chikusa , Nagoya , 464-8602 , Japan
| | - Hirotaka Kitoh-Nishioka
- Department of Chemistry , Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Japan
| | - Stephan Irle
- Department of Chemistry , Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Furo, Chikusa , Nagoya , 464-8602 , Japan
| | - Akihiro Ando
- IFMRI , National Institute of Advanced Industrial Science and Technology (AIST) , 1-8-31 Midorigaoka, Ikeda , Osaka , 563-8577 , Japan
| | - Luis M G Abegão
- IFMRI , National Institute of Advanced Industrial Science and Technology (AIST) , 1-8-31 Midorigaoka, Ikeda , Osaka , 563-8577 , Japan
- Departamento de Física , Universidade Federal de Sergipe , 49100-000 São Cristovão , SE , Brazil
| | - Kenji Kamada
- IFMRI , National Institute of Advanced Industrial Science and Technology (AIST) , 1-8-31 Midorigaoka, Ikeda , Osaka , 563-8577 , Japan
| | - Aiko Fukazawa
- Department of Chemistry , Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry , Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Furo, Chikusa , Nagoya , 464-8602 , Japan
| |
Collapse
|
33
|
Massue J, Felouat A, Vérité PM, Jacquemin D, Cyprych K, Durko M, Sznitko L, Mysliwiec J, Ulrich G. An extended excited-state intramolecular proton transfer (ESIPT) emitter for random lasing applications. Phys Chem Chem Phys 2018; 20:19958-19963. [DOI: 10.1039/c8cp03814g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An original ESIPT emitter showing random lasing properties is presented in this article.
Collapse
Affiliation(s)
- Julien Massue
- Institut de Chimie et Procédés pour l’Energie
- l’Environnement et la Santé (ICPEES)
- groupe Chimie Organique pour les Matériaux
- la Biologie et l’Optique (COMBO)
- UMR CNRS 7515
| | - Abdellah Felouat
- Institut de Chimie et Procédés pour l’Energie
- l’Environnement et la Santé (ICPEES)
- groupe Chimie Organique pour les Matériaux
- la Biologie et l’Optique (COMBO)
- UMR CNRS 7515
| | | | | | - Konrad Cyprych
- Advanced Materials Engineering and Modeling Group
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Martyna Durko
- Advanced Materials Engineering and Modeling Group
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Lech Sznitko
- Advanced Materials Engineering and Modeling Group
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Jaroslaw Mysliwiec
- Advanced Materials Engineering and Modeling Group
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Energie
- l’Environnement et la Santé (ICPEES)
- groupe Chimie Organique pour les Matériaux
- la Biologie et l’Optique (COMBO)
- UMR CNRS 7515
| |
Collapse
|
34
|
Takagi K, Yamada Y, Fukuda R, Ehara M, Takeuchi D. ESIPT emission behavior of methoxy-substituted 2-hydroxyphenylbenzimidazole isomers. NEW J CHEM 2018. [DOI: 10.1039/c8nj00455b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Double intramolecular hydrogen bonding enables efficient ESIPT emission both in solution and solid states.
Collapse
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Yoshihiro Yamada
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Ryoichi Fukuda
- Research Center for Computational Science and Institute for Molecular Science
- Okazaki 444-8585
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
- Kyoto University
| | - Masahiro Ehara
- Research Center for Computational Science and Institute for Molecular Science
- Okazaki 444-8585
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
- Kyoto University
| | - Daisuke Takeuchi
- Laboratory of Chemistry and Life Science Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
35
|
Espinoza EM, Larsen-Clinton JM, Krzeszewski M, Darabedian N, Gryko DT, Vullev VI. Bioinspired approach toward molecular electrets: synthetic proteome for materials. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractMolecular-level control of charge transfer (CT) is essential for both, organic electronics and solar-energy conversion, as well as for a wide range of biological processes. This article provides an overview of the utility of local electric fields originating from molecular dipoles for directing CT processes. Systems with ordered dipoles, i.e. molecular electrets, are the centerpiece of the discussion. The conceptual evolution from biomimicry to biomimesis, and then to biological inspiration, paves the roads leading from testing the understanding of how natural living systems function to implementing these lessons into optimal paradigms for specific applications. This progression of the evolving structure-function relationships allows for the development of bioinspired electrets composed of non-native aromatic amino acids. A set of such non-native residues that are electron-rich can be viewed as a synthetic proteome for hole-transfer electrets. Detailed considerations of the electronic structure of an individual residue prove of key importance for designating the points for optimal injection of holes (i.e. extraction of electrons) in electret oligomers. This multifaceted bioinspired approach for the design of CT molecular systems provides unexplored paradigms for electronic and energy science and engineering.
Collapse
Affiliation(s)
- Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | - Maciej Krzeszewski
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Narek Darabedian
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Valentine I. Vullev
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
36
|
Takagi K, Ito K, Yamada Y, Nakashima T, Fukuda R, Ehara M, Masu H. Synthesis and Optical Properties of Excited-State Intramolecular Proton Transfer Active π-Conjugated Benzimidazole Compounds: Influence of Structural Rigidification by Ring Fusion. J Org Chem 2017; 82:12173-12180. [PMID: 29090911 DOI: 10.1021/acs.joc.7b01967] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two excited-state intramolecular proton transfer (ESIPT) active benzimidazole derivatives (1 and 2) were synthesized by acid-catalyzed intramolecular cyclization. The steady-state fluorescence spectrum in THF revealed that ring-fused derivative 1 exhibits a dual emission, namely, the major emission was from the K* (keto) form (ESIPT emission) at 515 nm with a large Stokes shift of 11 100 cm-1 and the minor emission was from the E* (enol) form at below 400 nm. In contrast, the normal emission from the E* form was dominant and the fluorescence quantum yield was very low (Φ ∼ 0.002) for nonfused derivative 2. The time-resolved fluorescence spectroscopy of 1 suggested that ESIPT effectively occurs due to the restricted conformational transition to the S1-TICT state, and the averaged radiative and nonradiative decay rate constants were estimated as ⟨kf⟩ = 0.15 ns-1 and ⟨knr⟩ = 0.60 ns-1, respectively. The fluorescence emission of 1 was influenced by the measurement conditions, such as solvent polarity and basicity, as well as the presence of Lewis base. The ESIPT process and solvatochromic behavior were nicely reproduced by the DFT/TDDFT calculation using the PCM model. In the single-crystal fluorescent spectra, the ESIPT emissions were exclusively observed for both fused and nonfused compounds as a result of hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Kaede Ito
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yoshihiro Yamada
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takuya Nakashima
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Ryoichi Fukuda
- Research Center for Computational Science and Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University , 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Masahiro Ehara
- Research Center for Computational Science and Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University , 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Hyuma Masu
- Center for Analytical Instrumentation, Chiba University , 1-33 Yayoi, Inage, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
37
|
Heyer E, Benelhadj K, Budzák S, Jacquemin D, Massue J, Ulrich G. On the Fine-Tuning of the Excited-State Intramolecular Proton Transfer (ESIPT) Process in 2-(2′-Hydroxybenzofuran)benzazole (HBBX) Dyes. Chemistry 2017; 23:7324-7336. [DOI: 10.1002/chem.201700299] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Elodie Heyer
- Institut de Chimie et Procédés pour l'Energie; l'Environnement et la Santé (ICPEES); groupe Chimie Organique pour les Matériaux; la Biologie et l'Optique (COMBO); UMR CNRS 7515; Ecole Européenne de Chimie, Polymères et Matériaux (ECPM); 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Karima Benelhadj
- Institut de Chimie et Procédés pour l'Energie; l'Environnement et la Santé (ICPEES); groupe Chimie Organique pour les Matériaux; la Biologie et l'Optique (COMBO); UMR CNRS 7515; Ecole Européenne de Chimie, Polymères et Matériaux (ECPM); 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Simon Budzák
- CEISAM; UMR CNRS 6230, BP 92208; 2 rue de la Houssinière 44322 Nantes, Cedex 03 France
| | - Denis Jacquemin
- CEISAM; UMR CNRS 6230, BP 92208; 2 rue de la Houssinière 44322 Nantes, Cedex 03 France
- Institut Universitaire de France; 1, rue Descartes 75005 Paris, Cedex 05 France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie; l'Environnement et la Santé (ICPEES); groupe Chimie Organique pour les Matériaux; la Biologie et l'Optique (COMBO); UMR CNRS 7515; Ecole Européenne de Chimie, Polymères et Matériaux (ECPM); 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie; l'Environnement et la Santé (ICPEES); groupe Chimie Organique pour les Matériaux; la Biologie et l'Optique (COMBO); UMR CNRS 7515; Ecole Européenne de Chimie, Polymères et Matériaux (ECPM); 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| |
Collapse
|
38
|
Bao H, Xu Z, Wu D, Zhang H, Jin H, Liu Y. Copper(0)/Selectfluor System-Promoted Oxidative Carbon-Carbon Bond Cleavage/Annulation of o-Aryl Chalcones: An Unexpected Synthesis of 9,10-Phenanthraquinone Derivatives. J Org Chem 2017; 82:109-118. [PMID: 27933862 DOI: 10.1021/acs.joc.6b02212] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general and efficient protocol for the synthesis of 9,10-phenanthraquinone derivatives has been successfully developed involving a copper(0)/Selectfluor system-promoted oxidative carbon-carbon bond cleavage/annulation of o-aryl chalcones. A variety of substituted 9,10-phenanthraquinones were synthesized in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Zheng Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Degui Wu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Haifeng Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| |
Collapse
|
39
|
Jagadesan P, Whittemore T, Beirl T, Turro C, McGrier PL. Excited-State Intramolecular Proton-Transfer Properties of Three Tris(N-Salicylideneaniline)-Based Chromophores with Extended Conjugation. Chemistry 2016; 23:917-925. [PMID: 27859715 DOI: 10.1002/chem.201604315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 01/28/2023]
Abstract
The synthesis and photophysical properties of three tris(N-salicylideneaniline) (TSA) compounds containing 1,3,5-triarylbenzene, -tristyrylbenzene, and -tris(arylethynyl)benzene core units are reported. The TSA compounds underwent efficient excited-state intramolecular proton transfer (ESIPT) in solution and in solid state due to the preformed C=N⋅⋅⋅H-O hydrogen-bonded motifs of the structures. Steady-state fluorescence emission spectra of the TSA molecules revealed dual bands only in DMSO, and large Stokes shifts in other polar aprotic and protic solvents. Femtosecond transient absorption spectroscopic measurements in THF revealed lifetime values in the range of 14-16 ps for the excited-state keto-tautomer. The TSA compounds are also responsive to metal ions (Cu2+ and Zn2+ ) in DMSO, exhibit enhanced aggregate-induced emission (AIE) properties in DMSO/water mixtures, and are highly luminescent in the solid state.
Collapse
Affiliation(s)
- Pradeepkumar Jagadesan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Tyler Whittemore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Toni Beirl
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Claudia Turro
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Psaras L McGrier
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| |
Collapse
|
40
|
Skonieczny K, Gryko DT. Light-Induced Direct Arylation in the Solid Crystalline State as a Strategy Towards π-Expanded Imidazoles. Chem Asian J 2016; 11:2513-7. [PMID: 27452918 DOI: 10.1002/asia.201600752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Indexed: 12/21/2022]
Abstract
π-Expanded imidazoles bearing the 2-iodophenyl substituent at position 2 undergo direct photoinduced intramolecular arylation in the solid, crystalline state leading to large non-planar heterocycles. An analogous reaction employing 2-bromophenyl and 2-chlorophenyl substituents is considerably slower. Such processes have never before been demonstrated to occur in crystals and have allowed the efficient synthesizes of structurally unique compounds containing either the phenanthro[9',10':4,5]imidazo[1,2-f]phenanthridine moiety or structurally related skeletons. The reaction occurs in the thin crystalline layers irradiated with UV photons in an almost quantitative manner over 48-72 h. Several previously unknown architectures have been prepared using this methodology. Furthermore, the optical properties of these π-expanded imidazoles can be altered with the addition of heteroatoms and/or electron-donating groups.
Collapse
Affiliation(s)
- Kamil Skonieczny
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland.
| |
Collapse
|