1
|
Shih KC, Leriche G, Liu CH, He J, John VT, Fang J, Barker JG, Nagao M, Yang L, Yang J, Nieh MP. Antivesiculation and Complete Unbinding of Tail-Tethered Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1688-1697. [PMID: 38186288 DOI: 10.1021/acs.langmuir.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We report the effect of tail-tethering on vesiculation and complete unbinding of bilayered membranes. Amphiphilic molecules of a bolalipid, resembling the tail-tethered molecular structure of archaeal lipids, with two identical zwitterionic phosphatidylcholine headgroups self-assemble into a large flat lamellar membrane, in contrast to the multilamellar vesicles (MLVs) observed in its counterpart, monopolar nontethered zwitterionic lipids. The antivesiculation is confirmed by small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cyro-TEM). With the net charge of zero and higher bending rigidity of the membrane (confirmed by neutron spin echo (NSE) spectroscopy), the current membrane theory would predict that membranes should stack with each other (aka "bind") due to dominant van der Waals attraction, while the outcome of the nonstacking ("unbinding") membrane suggests that the theory needs to include entropic contribution for the nonvesicular structures. This report pioneers an understanding of how the tail-tethering of amphiphiles affects the structure, enabling better control over the final nanoscale morphology.
Collapse
Affiliation(s)
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Jibao He
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - John G Barker
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
2
|
Fletcher M, Zhu J, Rubio-Sánchez R, Sandler SE, Nahas KA, Michele LD, Keyser UF, Tivony R. DNA-Based Optical Quantification of Ion Transport across Giant Vesicles. ACS NANO 2022; 16:17128-17138. [PMID: 36222833 PMCID: PMC9620405 DOI: 10.1021/acsnano.2c07496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Accurate measurements of ion permeability through cellular membranes remains challenging due to the lack of suitable ion-selective probes. Here we use giant unilamellar vesicles (GUVs) as membrane models for the direct visualization of mass translocation at the single-vesicle level. Ion transport is indicated with a fluorescently adjustable DNA-based sensor that accurately detects sub-millimolar variations in K+ concentration. In combination with microfluidics, we employed our DNA-based K+ sensor for extraction of the permeation coefficient of potassium ions. We measured K+ permeability coefficients at least 1 order of magnitude larger than previously reported values from bulk experiments and show that permeation rates across the lipid bilayer increase in the presence of octanol. In addition, an analysis of the K+ flux in different concentration gradients allows us to estimate the complementary H+ flux that dissipates the charge imbalance across the GUV membrane. Subsequently, we show that our sensor can quantify the K+ transport across prototypical cation-selective ion channels, gramicidin A and OmpF, revealing their relative H+/K+ selectivity. Our results show that gramicidin A is much more selective to protons than OmpF with a H+/K+ permeability ratio of ∼104.
Collapse
Affiliation(s)
- Marcus Fletcher
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| | - Jinbo Zhu
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| | - Roger Rubio-Sánchez
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, LondonW12 0BZ, U.K.
- fabriCELL,
Molecular Sciences Research Hub, Imperial
College London, LondonW12 0BZ, U.K.
| | - Sarah E Sandler
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| | - Kareem Al Nahas
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| | - Lorenzo Di Michele
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, LondonW12 0BZ, U.K.
- fabriCELL,
Molecular Sciences Research Hub, Imperial
College London, LondonW12 0BZ, U.K.
| | - Ulrich F Keyser
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| | - Ran Tivony
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| |
Collapse
|
3
|
Falk ID, Gál B, Bhattacharya A, Wei JH, Welander PV, Boxer SG, Burns NZ. Enantioselective Total Synthesis of the Archaeal Lipid Parallel GDGT‐0 (Isocaldarchaeol)**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Isaac D. Falk
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Bálint Gál
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Jeremy H. Wei
- Department of Earth System Science Stanford University Stanford CA 94305 USA
| | - Paula V. Welander
- Department of Earth System Science Stanford University Stanford CA 94305 USA
| | - Steven G. Boxer
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Noah Z. Burns
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
4
|
Falk ID, Gál B, Bhattacharya A, Wei JH, Welander PV, Boxer SG, Burns NZ. Enantioselective Total Synthesis of the Archaeal Lipid Parallel GDGT-0 (Isocaldarchaeol)*. Angew Chem Int Ed Engl 2021; 60:17491-17496. [PMID: 33930240 DOI: 10.1002/anie.202104051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Archaeal glycerol dibiphytanyl glycerol tetraethers (GDGT) are some of the most unusual membrane lipids identified in nature. These amphiphiles are the major constituents of the membranes of numerous Archaea, some of which are extremophilic organisms. Due to their unique structures, there has been significant interest in studying both the biophysical properties and the biosynthesis of these molecules. However, these studies have thus far been hampered by limited access to chemically pure samples. Herein, we report a concise and stereoselective synthesis of the archaeal tetraether lipid parallel GDGT-0 and the synthesis and self-assembly of derivatives bearing different polar groups.
Collapse
Affiliation(s)
- Isaac D Falk
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Bálint Gál
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | | | - Jeremy H Wei
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
5
|
Guha A, McGuire ML, Leriche G, Yang J, Mayer M. A single-liposome assay that enables temperature-dependent measurement of proton permeability of extremophile-inspired lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183567. [PMID: 33476579 DOI: 10.1016/j.bbamem.2021.183567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Anirvan Guha
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Melissa L McGuire
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
6
|
Fusion of Bipolar Tetraether Lipid Membranes Without Enhanced Leakage of Small Molecules. Sci Rep 2019; 9:19359. [PMID: 31852914 PMCID: PMC6920354 DOI: 10.1038/s41598-019-55494-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023] Open
Abstract
A major challenge in liposomal research is to minimize the leakage of encapsulated cargo from either uncontrolled passive permeability across the liposomal membrane or upon fusion with other membranes. We previously showed that liposomes made from pure Archaea-inspired bipolar tetraether lipids exhibit exceptionally low permeability of encapsulated small molecules due to their capability to form more tightly packed membranes compared to typical monopolar lipids. Here, we demonstrate that liposomes made of synthetic bipolar tetraether lipids can also undergo membrane fusion, which is commonly accompanied by content leakage of liposomes when using typical bilayer-forming lipids. Importantly, we demonstrate calcium-mediated fusion events between liposome made of glycerolmonoalkyl glycerol tetraether lipids with phosphatidic acid headgroups (GMGTPA) occur without liposome content release, which contrasts with liposomes made of bilayer-forming EggPA lipids that displayed ~80% of content release under the same fusogenic conditions. NMR spectroscopy studies of a deuterated analog of GMGTPA lipids reveal the presence of multiple rigid and dynamic conformations, which provide evidence for the possibility of these lipids to form intermediate states typically associated with membrane fusion events. The results support that biomimetic GMGT lipids possess several attractive properties (e.g., low permeability and non-leaky fusion capability) for further development in liposome-based technologies.
Collapse
|
7
|
Müller S, Gruhle K, Meister A, Hause G, Drescher S. Bolalipid-Doped Liposomes: Can Bolalipids Increase the Integrity of Liposomes Exposed to Gastrointestinal Fluids? Pharmaceutics 2019; 11:E646. [PMID: 31816937 PMCID: PMC6956191 DOI: 10.3390/pharmaceutics11120646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/10/2023] Open
Abstract
The use of archaeal lipids and their artificial analogues, also known as bolalipids, represents a promising approach for the stabilization of classical lipid vesicles for oral application. In a previous study, we investigated the mixing behavior of three single-chain alkyl-branched bolalipids PC-C32(1,32Cn)-PC (n = 3, 6, 9) with either saturated or unsaturated phosphatidyl-cholines. We proved, that the bolalipids PC-C32(1,32C6)-PC and PC-C32(1,32C9)-PC show miscibility with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). In the present work, we extended our vesicle system to natural lipid mixtures using phosphatidylcholine from soy beans, and we investigated the effect of incorporated bolalipids on the integrity of these mixed liposomes (bolasomes) in different gastrointestinal fluids using a dithionite assay and a calcein release assay in combination with particle size measurements. Finally, we also studied the retention of calcein within the bolasomes during freeze-drying. As a main result, we could show that in particular PC-C32(1,32C6)-PC is able to increase the stability of bolasomes in simulated gastric fluid-a prerequisite for the further use of liposomes as oral drug delivery vehicles.
Collapse
Affiliation(s)
- Sindy Müller
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, 06120 Halle (Saale), Germany; (S.M.); (K.G.)
| | - Kai Gruhle
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, 06120 Halle (Saale), Germany; (S.M.); (K.G.)
| | - Annette Meister
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, MLU Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Gerd Hause
- Biocenter, MLU Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Simon Drescher
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, 06120 Halle (Saale), Germany; (S.M.); (K.G.)
| |
Collapse
|
8
|
Eggenberger OM, Leriche G, Koyanagi T, Ying C, Houghtaling J, Schroeder TBH, Yang J, Li J, Hall A, Mayer M. Fluid surface coatings for solid-state nanopores: comparison of phospholipid bilayers and archaea-inspired lipid monolayers. NANOTECHNOLOGY 2019; 30:325504. [PMID: 30991368 DOI: 10.1088/1361-6528/ab19e6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the context of sensing and characterizing single proteins with synthetic nanopores, lipid bilayer coatings provide at least four benefits: first, they minimize unwanted protein adhesion to the pore walls by exposing a zwitterionic, fluid surface. Second, they can slow down protein translocation and rotation by the opportunity to tether proteins with a lipid anchor to the fluid bilayer coating. Third, they provide the possibility to impart analyte specificity by including lipid anchors with a specific receptor or ligand in the coating. Fourth, they offer a method for tuning nanopore diameters by choice of the length of the lipid's acyl chains. The work presented here compares four properties of various lipid compositions with regard to their suitability as nanopore coatings for protein sensing experiments: (1) electrical noise during current recordings through solid-state nanopores before and after lipid coating, (2) long-term stability of the recorded current baseline and, by inference, of the coating, (3) viscosity of the coating as quantified by the lateral diffusion coefficient of lipids in the coating, and (4) the success rate of generating a suitable coating for quantitative nanopore-based resistive pulse recordings. We surveyed lipid coatings prepared from bolaamphiphilic, monolayer-forming lipids inspired by extremophile archaea and compared them to typical bilayer-forming phosphatidylcholine lipids containing various fractions of curvature-inducing lipids or cholesterol. We found that coatings from archaea-inspired lipids provide several advantages compared to conventional phospholipids; the stable, low noise baseline qualities and high viscosity make these membranes especially suitable for analysis that estimates physical protein parameters such as the net charge of proteins as they enable translocation events with sufficiently long duration to time-resolve dwell time distributions completely. The work presented here reveals that the ease or difficulty of coating a nanopore with lipid membranes did not depend significantly on the composition of the lipid mixture, but rather on the geometry and surface chemistry of the nanopore in the solid state substrate. In particular, annealing substrates containing the nanopore increased the success rate of generating stable lipid coatings.
Collapse
|
9
|
Kim YH, Leriche G, Diraviyam K, Koyanagi T, Gao K, Onofrei D, Patterson J, Guha A, Gianneschi N, Holland GP, Gilson MK, Mayer M, Sept D, Yang J. Entropic effects enable life at extreme temperatures. SCIENCE ADVANCES 2019; 5:eaaw4783. [PMID: 31049402 PMCID: PMC6494508 DOI: 10.1126/sciadv.aaw4783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Maintaining membrane integrity is a challenge at extreme temperatures. Biochemical synthesis of membrane-spanning lipids is one adaptation that organisms such as thermophilic archaea have evolved to meet this challenge and preserve vital cellular function at high temperatures. The molecular-level details of how these tethered lipids affect membrane dynamics and function, however, remain unclear. Using synthetic monolayer-forming lipids with transmembrane tethers, here, we reveal that lipid tethering makes membrane permeation an entropically controlled process that helps to limit membrane leakage at elevated temperatures relative to bilayer-forming lipid membranes. All-atom molecular dynamics simulations support a view that permeation through membranes made of tethered lipids reduces the torsional entropy of the lipids and leads to tighter lipid packing, providing a molecular interpretation for the increased transition-state entropy of leakage.
Collapse
Affiliation(s)
- Young Hun Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karthik Diraviyam
- Department of Biomedical Engineering, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takaoki Koyanagi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaifu Gao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Onofrei
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Joseph Patterson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anirvan Guha
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, Switzerland
| | - Nathan Gianneschi
- Departments of Chemistry, Materials Science and Engineering, and Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, Switzerland
| | - David Sept
- Department of Biomedical Engineering, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Drescher S, Otto C, Müller S, Garamus VM, Garvey CJ, Grünert S, Lischka A, Meister A, Blume A, Dobner B. Impact of Headgroup Asymmetry and Protonation State on the Aggregation Behavior of a New Type of Glycerol Diether Bolalipid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4360-4373. [PMID: 29557659 DOI: 10.1021/acs.langmuir.8b00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present work, we describe the synthesis and the temperature-dependent aggregation behavior of a new class of asymmetrical glycerol diether bolalipids. These bolalipids are composed of a membrane-spanning alkyl chain with 32 carbon atoms (C32) in the sn-3 position, a methyl-branched C16 alkyl chain in the sn-2 position, and a zwitterionic phosphocholine headgroup in the sn-1 position of a glycerol moiety. The long C32 alkyl chain is terminated either by a second phosphocholine (PC-Gly(2C16Me)C32-PC) or by a phosphodimethylethanolamine headgroup (PC-Gly(2C16Me)C32-Me2PE). The temperature- and pH-dependent aggregation behavior of both lipids was studied using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments. The morphology of the formed aggregates in an aqueous suspension was visualized by transmission electron microscopy (TEM). We show that PC-Gly(2C16Me)C32-PC and PC-Gly(2C16Me)C32-Me2PE at pH 5 self-assemble into large lamellar aggregates and large lipid vesicles. Within these structures, the bolalipid molecules are probably assembled in a monolayer with fully interdigitated chains. The lipid molecules seem to be tilted with respect to the layer normal to ensure a dense packing of the alkyl chains. A temperature increase leads to a transition from a lamellar gel phase to the liquid-crystalline phase at about 28-30 °C for both bolalipids. The lamellar aggregates of PC-Gly(2C16Me)C32-Me2PE started to transform into nanofibers when the pH value of the suspension was increased to above 11. At pH 12, these nanofibers were the dominant aggregates.
Collapse
Affiliation(s)
| | | | | | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht: Centre for Materials and Coastal Research (HZG) , Max-Planck-Strasse 1 , 21502 Geesthacht , Germany
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organisation (ANSTO) , Kirrawee DC , NSW Australia
| | | | | | - Annette Meister
- Institute of Biochemistry and Biotechnology , MLU Halle-Wittenberg , Kurt-Mothes-Strasse 3 , 06120 Halle (Saale) , Germany
| | - Alfred Blume
- Institute of Chemistry , MLU Halle-Wittenberg , von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | | |
Collapse
|
11
|
Kim YH, Hang L, Cifelli JL, Sept D, Mayer M, Yang J. Frequency-Based Analysis of Gramicidin A Nanopores Enabling Detection of Small Molecules with Picomolar Sensitivity. Anal Chem 2018; 90:1635-1642. [DOI: 10.1021/acs.analchem.7b02961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | | | - David Sept
- Department
of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2110, United States
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | |
Collapse
|
12
|
Sollich M, Yoshinaga MY, Häusler S, Price RE, Hinrichs KU, Bühring SI. Heat Stress Dictates Microbial Lipid Composition along a Thermal Gradient in Marine Sediments. Front Microbiol 2017; 8:1550. [PMID: 28878741 PMCID: PMC5572230 DOI: 10.3389/fmicb.2017.01550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Temperature exerts a first-order control on microbial populations, which constantly adjust the fluidity and permeability of their cell membrane lipids to minimize loss of energy by ion diffusion across the membrane. Analytical advances in liquid chromatography coupled to mass spectrometry have allowed the detection of a stunning diversity of bacterial and archaeal lipids in extreme environments such as hot springs, hydrothermal vents and deep subsurface marine sediments. Here, we investigated a thermal gradient from 18 to 101°C across a marine sediment field and tested the hypothesis that cell membrane lipids provide a major biochemical basis for the bioenergetics of archaea and bacteria under heat stress. This paper features a detailed lipidomics approach with the focus on membrane lipid structure-function. Membrane lipids analyzed here include polar lipids of bacteria and polar and core lipids of archaea. Reflecting the low permeability of their ether-linked isoprenoids, we found that archaeal polar lipids generally dominate over bacterial lipids in deep layers of the sediments influenced by hydrothermal fluids. A close examination of archaeal and bacterial lipids revealed a membrane quandary: not only low permeability, but also increased fluidity of membranes are required as a unified property of microbial membranes for energy conservation under heat stress. For instance, bacterial fatty acids were composed of longer chain lengths in concert with higher degree of unsaturation while archaea modified their tetraethers by incorporation of additional methyl groups at elevated sediment temperatures. It is possible that these configurations toward a more fluidized membrane at elevated temperatures are counterbalanced by the high abundance of archaeal glycolipids and bacterial sphingolipids, which could reduce membrane permeability through strong intermolecular hydrogen bonding. Our results provide a new angle for interpreting membrane lipid structure-function enabling archaea and bacteria to survive and grow in hydrothermal systems.
Collapse
Affiliation(s)
- Miriam Sollich
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Marcos Y Yoshinaga
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | - Stefan Häusler
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Roy E Price
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony BrookNY, United States
| | - Kai-Uwe Hinrichs
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Solveig I Bühring
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| |
Collapse
|
13
|
Koyanagi T, Cifelli JL, Leriche G, Onofrei D, Holland GP, Yang J. Thiol-Triggered Release of Intraliposomal Content from Liposomes Made of Extremophile-Inspired Tetraether Lipids. Bioconjug Chem 2017; 28:2041-2045. [PMID: 28708392 DOI: 10.1021/acs.bioconjchem.7b00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Liposomal drug-delivery systems have been used for delivery of drugs to targeted tissues while reducing unwanted side effects. DOXIL, for instance, is a liposomal formulation of the anticancer agent doxorubicin (DOX) that has been used to address problems associated with nonspecific toxicity of free DOX. However, while this liposomal formulation allows for a more-stable circulation of doxorubicin in the body compared to free drug, the efficacy for cancer therapy is reduced in comparison with systemic injections of free drug. A robust liposomal system that can be triggered to release DOX in cancer cells could mitigate problems associated with reduced drug efficacy. In this work, we present a serum-stable, cholesterol-integrated tetraether lipid comprising of a cleavable disulfide bond, {GcGT(S-S)PC-CH}, that is designed to respond to the reducing environment of the cell to trigger the release intraliposomal content upon cellular uptake by cancer cells. A cell viability assay revealed that DOX- loaded liposomes composed of pure GcGT(S-S)PC-CH lipids were ∼20 times more toxic than DOXIL, with an IC50 value comparable to that of free DOX. The low inherent membrane-leakage properties of GcGT(S-S)PC-CH liposomes in the presence of serum, combined with an intracellular triggered release of encapsulated cargo, represents a promising approach for developing improved drug-delivery formulations for the treatment of cancer and possibly other diseases.
Collapse
Affiliation(s)
- Takaoki Koyanagi
- Department of Chemistry and Biochemistry, University of California San Diego , La Jolla, California 92093, United States
| | - Jessica L Cifelli
- Department of Chemistry and Biochemistry, University of California San Diego , La Jolla, California 92093, United States
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego , La Jolla, California 92093, United States
| | - David Onofrei
- Department of Chemistry and Biochemistry, San Diego State University , San Diego, California 92182, United States
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University , San Diego, California 92182, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego , La Jolla, California 92093, United States
| |
Collapse
|
14
|
Koyanagi T, Cao KJ, Leriche G, Onofrei D, Holland GP, Mayer M, Sept D, Yang J. Hybrid Lipids Inspired by Extremophiles and Eukaryotes Afford Serum‐Stable Membranes with Low Leakage. Chemistry 2017; 23:6757-6762. [DOI: 10.1002/chem.201701378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Takaoki Koyanagi
- Department of Chemistry and Biochemistry University of California San Diego La Jolla California 92093-0358 USA
| | - Kevin J. Cao
- Department of Chemistry and Biochemistry University of California San Diego La Jolla California 92093-0358 USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry University of California San Diego La Jolla California 92093-0358 USA
| | - David Onofrei
- Department of Chemistry and Biochemistry San Diego State University San Diego California 92182-1030 USA
| | - Gregory P. Holland
- Department of Chemistry and Biochemistry San Diego State University San Diego California 92182-1030 USA
| | - Michael Mayer
- Adolphe Merkle Institute University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - David Sept
- Department of Biomedical Engineering University of Michigan Ann Arbor Michigan 48109-2110 USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry University of California San Diego La Jolla California 92093-0358 USA
| |
Collapse
|
15
|
Leriche G, Cifelli JL, Sibucao KC, Patterson JP, Koyanagi T, Gianneschi NC, Yang J. Characterization of drug encapsulation and retention in archaea-inspired tetraether liposomes. Org Biomol Chem 2017; 15:2157-2162. [DOI: 10.1039/c6ob02832b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Archaea-inspired lipids exhibit reduced membrane permeability and increased retention of hydrophilic drugs in liposomes.
Collapse
Affiliation(s)
- Geoffray Leriche
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Jessica L. Cifelli
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Kevin C. Sibucao
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Joseph P. Patterson
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Takaoki Koyanagi
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| |
Collapse
|