1
|
Sharma AK, Cheran A, Kumar J, Srivastava A. A Helically-Twisted Stereodynamic Probe for Chiroptical Sensing of Chiral Amines through Point-to-Helical Chirality Transmission. Chem Asian J 2025; 20:e202401376. [PMID: 39745148 DOI: 10.1002/asia.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Chiral amines and amino alcohols form an important category of molecules employed in the designing of new drugs and catalyst. Herein, we present a helically-twisted stereodynamic dialdehyde probe 1 for the determining of absolute configuration, and enantiomeric excess of chiral amine and amino alcohols. Probe 1 is based on the pyridine-2,6-dicarboxamide (PDC) core and undergoes rapid interconversion between the P- and M- conformers. However, upon imine formation with chiral amines, probe 1 gets locked it in a single conformer majorly. This induces a strong CD signal in addition to changes in the UV-vis and fluorescence signals. The CD spectral change allowed for quantitative enantiomeric excess determination of chiral amines. Circular polarized luminescence (CPL) spectra having the glum of 1×10-3 was obtained upon imine formation between probe 1 and diamine 2. Single crystal X-ray diffraction studies (SCXRD) confirmed the twisted conformation in 1@(R)-4 and 1@(S)-4, stabilized by intramolecular hydrogen bonding between bound imine nitrogen and proximate amide group.
Collapse
Affiliation(s)
- Akash Kumar Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal) Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Arunima Cheran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517619, India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517619, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal) Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| |
Collapse
|
2
|
Wang L, Gao T, Yan J, Hong Y, Ma Y, Jin R, Kang C, Gao L. Enantiomer Recognition Based on Chirality Transfer from Chiral Amines to Ternary Dynamic Covalent Systems. J Org Chem 2024; 89:1797-1806. [PMID: 38197600 DOI: 10.1021/acs.joc.3c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Enantiomer recognition is usually required in organic synthesis and materials and life sciences. This paper describes an enantiomer recognition method based on ternary dynamic covalent systems constructed via the complexation of chiral amines with a chiral boronate derived from 1,4-phenylenediboric acid and an L-DOPA-modified naphthalenediimide. The ternary systems aggregate into chiral assemblies driven by π-π interactions, and the chirality is transferred from the chiral amines to assemblies with high stereospecificity. Consequently, the enantiomer composition of chiral amines and the absolute configuration of the major enantiomer can be determined according to the sign of the Cotton effect of the ternary system by using circular dichroism (CD) spectroscopy. This method offers the advantage of using the long wavelength CD signals of the boronate at around 520 nm, thereby avoiding interference with those of the carbon skeleton. This ternary system provides a novel approach to the design of enantiomer recognition systems.
Collapse
Affiliation(s)
- Liangpeng Wang
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Tingting Gao
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jijun Yan
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yun Hong
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yiming Ma
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Rizhe Jin
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chuanqing Kang
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lianxun Gao
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
3
|
Essien NB, Galvácsi A, Kállay C, Al-Hilaly Y, González-Méndez R, Akien GR, Tizzard GJ, Coles SJ, Besora M, Kostakis GE. Fluorine-based Zn salan complexes. Dalton Trans 2023; 52:4044-4057. [PMID: 36880418 DOI: 10.1039/d2dt04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We synthesised and characterised the racemic and chiral versions of two Zn salan fluorine-based complexes from commercially available materials. The complexes are susceptible to absorbing H2O from the atmosphere. In solution (DMSO-H2O) and at the millimolar level, experimental and theoretical studies identify that these complexes exist in a dimeric-monomeric equilibrium. We also investigated their ability to sense amines via19F NMR. In CDCl3 or d6-DMSO, strongly coordinating molecules (H2O or DMSO) are the limiting factor in using these easy-to-make complexes as chemosensory platforms since their exchange with analytes requires an extreme excess of the latter.
Collapse
Affiliation(s)
- Nsikak B Essien
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Antal Galvácsi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Youssra Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.,Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ramón González-Méndez
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Maria Besora
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo, 1, 43007 Tarragona, Spain.
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
4
|
Audsley G, Carpenter H, Essien NB, Lai-Morrice J, Al-Hilaly Y, Serpell LC, Akien GR, Tizzard GJ, Coles SJ, Ulldemolins CP, Kostakis GE. Chiral Co 3Y Propeller-Shaped Chemosensory Platforms Based on 19F-NMR. Inorg Chem 2023; 62:2680-2693. [PMID: 36716401 PMCID: PMC9930122 DOI: 10.1021/acs.inorgchem.2c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two propeller-shaped chiral CoIII3YIII complexes built from fluorinated ligands are synthesized and characterized by single-crystal X-ray diffraction (SXRD), IR, UV-vis, circular dichroism (CD), elemental analysis, thermogravimetric analysis (TGA), electron spray ionization mass spectroscopy (ESI-MS), and NMR (1H, 13C, and 19F). This work explores the sensing and discrimination abilities of these complexes, thus providing an innovative sensing method using a 19F NMR chemosensory system and opening new directions in 3d/4f chemistry. Control experiments and theoretical studies shed light on the sensing mechanism, while the scope and limitations of this method are discussed and presented.
Collapse
Affiliation(s)
- Gabrielle Audsley
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Harry Carpenter
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Nsikak B. Essien
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - James Lai-Morrice
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Youssra Al-Hilaly
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK,Chemistry
Department, College of Science, Mustansiriyah
University, Baghdad 10001, Iraq
| | - Louise C. Serpell
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK
| | - Geoffrey R. Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | | | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK,
| |
Collapse
|
5
|
Abstract
The detection and discrimination of chiral analytes has always been a topical theme in food and pharmaceutical industries and environmental monitoring, especially when dealing with chiral drugs and pesticides, whose enantiomeric nature assessment is of crucial importance. The typical approach matches novel chiral receptors designed ad hoc for the discrimination of a target enantiomer with emerging nanotechnologies. The massive synthetic efforts requested and the difficulty of analyzing complex matrices warrant the ever-growing exploitation of sensor array as an alternative route, using a limited number of chiral or both chiral and achiral sensors for the stereoselective identification and dosing of chiral compounds. This review aims to illustrate a little-explored winning strategy in chiral sensing based on sensor arrays. This strategy mimics the functioning of natural olfactory systems that perceive some couples of enantiomeric compounds as distinctive odors (i.e., using an array of a considerable number of broad selective receptors). Thus, fundamental concepts related to the working principle of sensor arrays and the role of data analysis techniques and models have been briefly presented. After the discussion of existing examples in the literature using arrays for discriminating enantiomers and, in some cases, determining the enantiomeric excess, the remaining challenges and future directions are outlined for researchers interested in chiral sensing applications.
Collapse
|
6
|
Wu D, Wang F, Ma C, Tan L, Cai W, Li J, Kong Y. A Real-Time Strategy for Chiroptical Sensing and Enantiomeric Excess Determination of Primary Amines via an Acid-Base Reaction. Org Lett 2022; 24:5226-5229. [PMID: 35822909 DOI: 10.1021/acs.orglett.2c02246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two achiral aromatic carboxylic acids that included the 1,8-naphthalimide group and an imidazolium cation were synthesized and exploited as chiroptical sensors. These compounds showed the real-time discrimination and enantiomeric excess determination of chiral amines and amino alcohols via an acid-base interaction, especially for UV-silent chiral compounds.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
7
|
Sripada A, Thanzeel FY, Wolf C. Unified sensing of the concentration and enantiomeric composition of chiral compounds with an achiral probe. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Yu Y, Yang G, Zhang S, Liu M, Xu S, Wang C, Li M, Zhang SXA. Wide-Range and Highly Sensitive Chiral Sensing by Discrete 2D Chirality Transfer on Confined Surfaces of Au(I)-Thiolate Nanosheets. ACS NANO 2022; 16:148-159. [PMID: 34898188 DOI: 10.1021/acsnano.1c04693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circular dichroism (CD) chiral sensing is very promising to meet the ever-increasing demands for high-throughput chiral analysis in asymmetric synthesis. However, it is still very challenging to sensitively quantify the composition of enantiomers in a wide concentration range because the existing sensing systems show either linear CD response resultant from stoichiometric chiral transfer or nonlinear CD response resultant from amplified chiral transfer and thus have the drawbacks of low sensitivity and narrow quantification range, respectively. Herein, we propose a sensing system of two-dimensional (2D) Au(I)-thiolate nanosheets. The disordered interligand interactions on the confined surfaces of nanosheets enable the formation of discrete amplified chiral domains around the adsorbed chiral analytes, resulting in a linearly amplified chiral transfer behavior, which provides a solution for highly sensitive and wide-range quantification of enantiomer compositions. Taking (1R, 2R)-(-)- and (1S, 2S)-(+)-1,2-diamino cyclohexanes as example analytes, the concentration and full-range enantiomeric excess (ee) values have been quickly determined by adsorbing them on the surface of Au(I)-MPA (MPA: 3-mercaptopropionic acid) nanosheets in the concentration range of 1.0 × 10-6 to 4.0 × 10-5 M. By engineering the surface functional groups, Au(I)-thiolate nanosheets can be extended to sense other types of analytes, and several polyols with multiple chiral centers have been sensed by boronic acid functionalized nanosheets at the 10-7 M level. The high performances, good extendibility, and one-pot high-yield aqueous synthesis ensure these Au(I)-thiolate nanosheets can be developed as a practical and powerful chiral sensing platform.
Collapse
Affiliation(s)
- Yang Yu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, People's Republic of China
| | - Guojian Yang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, People's Republic of China
| | - Shengrui Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, People's Republic of China
| | - Mo Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, People's Republic of China
| | - Shujue Xu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, People's Republic of China
| | - Chunyu Wang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, People's Republic of China
| | - Minjie Li
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, People's Republic of China
| |
Collapse
|
9
|
Pushina M, Farshbaf S, Mochida W, Kanakubo M, Nishiyabu R, Kubo Y, Anzenbacher P. A Fluorescence Sensor Array Based on Zinc(II)-Carboxyamidoquinolines: Toward Quantitative Detection of ATP*. Chemistry 2021; 27:11344-11351. [PMID: 34129701 DOI: 10.1002/chem.202100896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The newly prepared fluorescent carboxyamidoquinolines (1-3) and their Zn(II) complexes (Zn@1-Zn@3) were used to bind and sense various phosphate anions utilizing a relay mechanism, in which the Zn(II) ion migrates from the Zn@1-Zn@3 complexes to the phosphate, namely adenosine 5'-triphosphate (ATP) and pyrophosphate (PPi), a process accompanied by a dramatic change in fluorescence. Zn@1-Zn@3 assemblies interact with adenine nucleotide phosphates while displaying an analyte-specific response. This process was investigated using UV-vis, fluorescence, and NMR spectroscopy. It is shown that the different binding selectivity and the corresponding fluorescence response enable differentiation of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), pyrophosphate (PPi), and phosphate (Pi). The cross-reactive nature of the carboxyamidoquinolines-Zn(II) sensors in conjunction with linear discriminant analysis (LDA) was utilized in a simple fluorescence chemosensor array that allows for the identification of ATP, ADP, PPi, and Pi from 8 other anions including adenosine 5'-monophosphate (AMP) with 100 % correct classification. Furthermore, the support vector machine algorithm, a machine learning method, allowed for highly accurate quantitation of ATP in the range of 5-100 μM concentration in unknown samples with error <2.5 %.
Collapse
Affiliation(s)
- Mariia Pushina
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Sepideh Farshbaf
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Wakana Mochida
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Masashi Kanakubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Pavel Anzenbacher
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
10
|
Groleau RR, James TD, Bull SD. The Bull-James assembly: Efficient iminoboronate complex formation for chiral derivatization and supramolecular assembly. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Li B, Zhang J, Li L, Chen G. A rapid and sensitive method for chiroptical sensing of α-amino acids via click-like labeling with o-phthalaldehyde and p-toluenethiol. Chem Sci 2020; 12:2504-2508. [PMID: 34164017 PMCID: PMC8179345 DOI: 10.1039/d0sc05749e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly practical method for comprehensive chiroptical sensing of free α amino acids with streamlined operation and high sensitivity via dual CD/UV measurements is developed. The assay takes advantage of an efficient and selective three-component labeling reaction of primary amines with o-phthalaldehyde and p-toluenethiol reagents to derivatize the NH2 group of analytes into an isoindole. The covalent labeling generates sensitive UV and CD readouts, both of which show an excellent linear relationship with the concentration of analytes. The high reactivity and the novel optical reporting mechanism allow fast and accurate measurement without background interference. The sensing assay works well for a remarkably broad range of analyte concentrations, with an unprecedented lower limit of 10 micromolar concentration. A highly practical method for comprehensive chiroptical sensing of free α amino acids with streamlined operation and high sensitivity via dual CD/UV measurements is developed.![]()
Collapse
Affiliation(s)
- Bo Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China .,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jie Zhang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
12
|
Shcherbakova EG, James TD, Anzenbacher P. High-throughput assay for determining enantiomeric excess of chiral diols, amino alcohols, and amines and for direct asymmetric reaction screening. Nat Protoc 2020; 15:2203-2229. [DOI: 10.1038/s41596-020-0329-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/14/2020] [Indexed: 11/09/2022]
|
13
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
14
|
Ligand Design for Asymmetric Catalysis: Combining Mechanistic and Chemoinformatics Approaches. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Thanzeel FY, Sripada A, Wolf C. Quantitative Chiroptical Sensing of Free Amino Acids, Biothiols, Amines, and Amino Alcohols with an Aryl Fluoride Probe. J Am Chem Soc 2019; 141:16382-16387. [PMID: 31564090 DOI: 10.1021/jacs.9b07588] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The comprehensive determination of the absolute configuration, enantiomeric ratio, and total amount of standard amino acids by optical methods adaptable to high-throughput screening with modern plate readers has remained a major challenge to date. We now present a small-molecular probe that smoothly reacts with amino acids and biothiols in aqueous solution and thereby generates distinct chiroptical responses to accomplish this task. The achiral sensor is readily available, inexpensive, and suitable for chiroptical analysis of each of the 19 standard amino acids, biothiols, aliphatic, and aromatic amines and amino alcohols. The sensing method is operationally simple, and data collection and processing are straightforward. The utility and practicality of the assay are demonstrated with the accurate analysis of 10 aspartic acid samples covering a wide concentration range and largely varying enantiomeric compositions. Accurate er sensing of 85 scalemic samples of Pro, Met, Cys, Ala, methylpyrrolidine, 1-(2-naphthyl)amine, and mixtures thereof is also presented.
Collapse
Affiliation(s)
- F Yushra Thanzeel
- Department of Chemistry , Georgetown University , 37th and O Streets , Washington , D.C. 20057 , United States
| | - Archita Sripada
- Department of Chemistry , Georgetown University , 37th and O Streets , Washington , D.C. 20057 , United States
| | - Christian Wolf
- Department of Chemistry , Georgetown University , 37th and O Streets , Washington , D.C. 20057 , United States
| |
Collapse
|
16
|
Pilicer SL, Mancinelli M, Mazzanti A, Wolf C. Predictive chirality sensing via Schiff base formation. Org Biomol Chem 2019; 17:6699-6705. [PMID: 31243416 DOI: 10.1039/c9ob01265f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Among the large number of chiroptical sensors that have been developed to date, few allow rational determination of the absolute configuration of chiral substrates together with quantitative ee analysis. We have prepared and tested stereodynamic N-aryl aminobenzaldehyde sensors that bind chiral amines via Schiff base formation. The covalent binding of the amine substrate generates a conformational bias in the chromophoric sensor moiety which results in characteristic CD signals. Computational analysis revealed that CD prediction of the sign of the Cotton effect and thus determination of the absolute configuration of the substrate becomes practical with a sterically crowded sensor design because the number of conformations to be considered is largely reduced and the chiroptical sensor response is less sensitive to conformational equilibria. The amplitude of the measured CD signal can be used for quantitative ee analysis of nonracemic amine samples with the help of a calibration curve.
Collapse
Affiliation(s)
- Samantha L Pilicer
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, USA.
| | - Michele Mancinelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Andrea Mazzanti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, USA.
| |
Collapse
|
17
|
Zhu Y, Wu X, Abed M, Gu S, Pu L. Biphasic Enantioselective Fluorescent Recognition of Amino Acids by a Fluorophilic Probe. Chemistry 2019; 25:7866-7873. [DOI: 10.1002/chem.201900880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/19/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan‐Yuan Zhu
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 P. R. China
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 USA
| | - Xue‐Dan Wu
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 USA
| | - Mehdi Abed
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 USA
| | - Shuang‐Xi Gu
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 USA
- Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Lin Pu
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 USA
| |
Collapse
|
18
|
Sheykhi S, Mosca L, Durgala JM, Anzenbacher P. An indicator displacement assay recognizes enantiomers of chiral carboxylates. Chem Commun (Camb) 2019; 55:7183-7186. [DOI: 10.1039/c9cc03352a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Analyte chirality induces changes in fluorescence.
Collapse
Affiliation(s)
- Sara Sheykhi
- Department of Chemistry and Center for Photochemical Sciences
- Bowling Green State University
- Bowling Green
- USA
| | - Lorenzo Mosca
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - Johnathon M. Durgala
- Department of Chemistry and Center for Photochemical Sciences
- Bowling Green State University
- Bowling Green
- USA
| | - Pavel Anzenbacher
- Department of Chemistry and Center for Photochemical Sciences
- Bowling Green State University
- Bowling Green
- USA
| |
Collapse
|
19
|
Pushina M, Farshbaf S, Shcherbakova EG, Anzenbacher P. A dual chromophore sensor for the detection of amines, diols, hydroxy acids, and amino alcohols. Chem Commun (Camb) 2019; 55:4495-4498. [PMID: 30919863 DOI: 10.1039/c9cc01051c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The determination of enantiomeric excess (ee) in various groups of chiral compounds, namely amines, amino alcohols, diols, and hydroxy acids is performed using a dual chromophore FRET/PET based sensor ensemble. The sensing ensemble utilizes fluorescence changes from two chromophores (indicators) to classify 13 pairs of enantiomers as well as allows for the qualitative and quantitative determination of ee of various classes of chiral compounds with high accuracy (<2% error).
Collapse
Affiliation(s)
- Mariia Pushina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | | | |
Collapse
|
20
|
Octa-Smolin F, Niemeyer J. Stereoselective Sensing ofl- andd-Amino Acids: Development of a Fluorescence-Array Based on Readily Available Chiral Phosphoric Acids. Chemistry 2018; 24:16506-16510. [DOI: 10.1002/chem.201805003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Frescilia Octa-Smolin
- Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45141 Essen Germany
| | - Jochen Niemeyer
- Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45141 Essen Germany
| |
Collapse
|
21
|
Octa-Smolin F, Thiele M, Yadav R, Platzek A, Clever GH, Niemeyer J. Chiral Receptors for Lysine Based on Covalently Linked Bis- and Tris-binaphthylphosphoric Acids. Org Lett 2018; 20:6153-6156. [PMID: 30252491 DOI: 10.1021/acs.orglett.8b02619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The synthesis and application of three chiral receptors based on the covalent linkage of 1,1'-binaphthylphosphoric acids is reported. The binding of the lysine enantiomers to the chiral receptors was investigated by DOSY-NMR and NMR titrations, revealing that the bisphosphoric acid 1d acts as a highly stereoselective receptor for binding of d-lysine.
Collapse
Affiliation(s)
- Frescilia Octa-Smolin
- Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), Department of Chemistry , University of Duisburg-Essen , Universitätsstrasse 7 , 45141 Essen , Germany
| | - Maike Thiele
- Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), Department of Chemistry , University of Duisburg-Essen , Universitätsstrasse 7 , 45141 Essen , Germany
| | - Rohan Yadav
- Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), Department of Chemistry , University of Duisburg-Essen , Universitätsstrasse 7 , 45141 Essen , Germany
| | - André Platzek
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - Guido H Clever
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - Jochen Niemeyer
- Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), Department of Chemistry , University of Duisburg-Essen , Universitätsstrasse 7 , 45141 Essen , Germany
| |
Collapse
|
22
|
Choi H, Kim S, Lee S, Kim C, Ryu JH. Array-Based Protein Sensing Using an Aggregation-Induced Emission (AIE) Light-Up Probe. ACS OMEGA 2018; 3:9276-9281. [PMID: 31459059 PMCID: PMC6644794 DOI: 10.1021/acsomega.8b01269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/02/2018] [Indexed: 06/10/2023]
Abstract
Protein detection and identification are important for the diagnosis of diseases; however, the development of facile sensing probes still remains challenging. Here, we present an array-based "turn on" protein-sensing platform capable of detecting and identifying proteins using aggregation-induced emission luminogens (AIEgens). The water-soluble AIEgens in which fluorescence was initially turned off showed strong fluorescence in the presence of nanomolar concentrations of proteins via restriction of the intramolecular rotation of the AIEgens. The binding affinities between the AIEgens and proteins were associated with various chemical functional groups on AIEgens, resulting in distinct fluorescent-signal outcomes for each protein. The combined fluorescence outputs provided sufficient information to detect and discriminate proteins of interest by linear discriminant analysis. Furthermore, the array-based sensor enabled classification of different concentrations of specific proteins. These results provide novel insight into the use of the AIEgens as a new type of sensing probe in array-based systems.
Collapse
Affiliation(s)
| | | | | | | | - Ja-Hyoung Ryu
- E-mail: . Tel: +82-52-2172548. Fax: +82-52-2172019 (J.-H.R.)
| |
Collapse
|
23
|
Keyzer EN, Sava A, Ronson TK, Nitschke JR, McConnell AJ. Post-Assembly Reactivity of N-Aryl Iminoboronates: Reversible Radical Coupling and Unusual B-N Dynamic Covalent Chemistry. Chemistry 2018; 24:12000-12005. [PMID: 29972260 PMCID: PMC6175077 DOI: 10.1002/chem.201802790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Post-assembly reaction of a dynamic covalent iminoboronate system following addition of Cp2 Co resulted in the formation of a series of new reductively coupled dianionic dimers via C-C bond formation. The dimers formed as a mixture of BN-containing isomeric products: diastereomers rac5 and meso5, with coupled five-membered rings, and enantiomeric rac6, with a fused six-membered ring bicyclic system from C-C bond formation and rearrangement of the B-N bonds. Each isomer was identified using 1 H NMR spectroscopy in combination with single crystal X-ray structure determination. Interestingly, interconversion between the coupled five-membered rings (rac5 ) and fused bicyclic systems (rac6 ) was found to occur through an unprecedented breaking and reforming of the B-N covalent bond. Further, the coupled products could be converted quantitatively back to their iminoboronate precursors with addition of the electron abstractor Ph3 C+ .
Collapse
Affiliation(s)
- Evan N. Keyzer
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - Alexandru Sava
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | | | - Anna J. McConnell
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
- Otto Diels Institute of Organic ChemistryUniversity of Kiel24118KielGermany
| |
Collapse
|
24
|
Herrera BT, Pilicer SL, Anslyn EV, Joyce LA, Wolf C. Optical Analysis of Reaction Yield and Enantiomeric Excess: A New Paradigm Ready for Prime Time. J Am Chem Soc 2018; 140:10385-10401. [PMID: 30059621 DOI: 10.1021/jacs.8b06607] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This Perspective highlights the advances of optical methods for asymmetric reaction discovery. Optical analysis allows for the determination of absolute configuration, enantiomeric excess and reaction yield that is amenable to high-throughput experimentation. Thus, the synthetic organic community is encouraged to incorporate the methods discussed to expedite the development of high-yielding, enantioselective transformations.
Collapse
Affiliation(s)
- Brenden T Herrera
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Samantha L Pilicer
- Department of Chemistry , Georgetown University , Washington, D.C. 20057 , United States
| | - Eric V Anslyn
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Leo A Joyce
- Department of Process Research & Development , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Christian Wolf
- Department of Chemistry , Georgetown University , Washington, D.C. 20057 , United States
| |
Collapse
|
25
|
Badetti E, Carmo Dos Santos NA, Scaramuzzo FA, Bravin C, Wurst K, Licini G, Zonta C. Diasteroselective multi-component assemblies from dynamic covalent imine condensation and metal-coordination chemistry: mechanism and narcissistic stereochemistry self-sorting. RSC Adv 2018; 8:19494-19498. [PMID: 35540993 PMCID: PMC9080712 DOI: 10.1039/c8ra03989e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 12/03/2022] Open
Abstract
Self-assembly of a modified tris(2-pyridylmethyl)amine TPMA ligand, zinc(ii) or cobalt(ii) ions, and amino acids have been used effectively as stereo dynamic optical probes for the determination of the enantiomeric excess of free amino acids either using Electronic or Vibrational Circular Dichroism (CD and VCD). Herein, we report the mechanistic and stereochemical study of the self-assembly process which reveals a complex equilibrium in solution where even small variations in the experimental conditions can profoundly affect the final products of the reaction. In particular, variation on the metal stoichiometry switch give rises to an entirely enantio narcissistic self-assembly of the structure.
Collapse
Affiliation(s)
- Elena Badetti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1 35131 Padova (PD) Italy
| | | | - Francesca A Scaramuzzo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1 35131 Padova (PD) Italy
| | - Carlo Bravin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1 35131 Padova (PD) Italy
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1 35131 Padova (PD) Italy
| | - Cristiano Zonta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1 35131 Padova (PD) Italy
| |
Collapse
|
26
|
Muralidharan VP, Sathiyanarayanan KI. Naphthalimide-Based Chiral Fluorescence Sensor Employing (S)-BINOL Unit for Highly Enantioselective Recognition of α-Amino Alcohols with Opposite Chiral Selectivity. ChemistrySelect 2018. [DOI: 10.1002/slct.201703101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Vivek Panyam Muralidharan
- Department of Chemistry; School of Advanced Sciences; VIT University; Vellore - 632014 Tamil Nadu India
| | | |
Collapse
|
27
|
|
28
|
Carmo dos Santos NA, Badetti E, Licini G, Abbate S, Longhi G, Zonta C. A stereodynamic fluorescent probe for amino acids. Circular dichroism and circularly polarized luminescence analysis. Chirality 2017; 30:65-73. [DOI: 10.1002/chir.22780] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 01/09/2023]
Affiliation(s)
| | - Elena Badetti
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; Padova PD Italy
| | - Giulia Licini
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; Padova PD Italy
| | - Sergio Abbate
- Department of Molecular and Translational Medicine; Università di Brescia; Brescia BS Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine; Università di Brescia; Brescia BS Italy
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; Padova PD Italy
| |
Collapse
|
29
|
Zardi P, Wurst K, Licini G, Zonta C. Concentration-Independent Stereodynamic g-Probe for Chiroptical Enantiomeric Excess Determination. J Am Chem Soc 2017; 139:15616-15619. [PMID: 29039937 DOI: 10.1021/jacs.7b09469] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enantiomeric excess (ee) determination is crucial in many aspects of science, from synthesis to materials. Within this subject, coupling molecular sensors with chiroptical techniques is a straightforward approach to the stereochemical analysis of chiral molecules, especially in terms of process immediacy and labor. Stereodynamic probes typically consist of racemic mixtures of rapidly interconverting enantiomeric conformers able to recognize a chiral analyte and greatly amplify its chiroptical readout. A great number of sensors have been developed, but their activity is generally restricted to one or a few classes of chemicals, and the analysis outcome relies on precise knowledge of the probe and analyte concentrations. This aspect in particular limits the potential practical applications. Here we report an oxo-vanadium(V) aminotriphenolate complex that was found to act as a concentration-independent stereodynamic sensor for a wide range of compounds. The bare complex is CD-silent, but coordination of an enantioenriched substrate immediately gives rise to intense Cotton effects in the visible region. Furthermore, a geometry change during the substrate-complex interaction leads to a marked optical response, as witnessed by a strong red-shift of the probe absorption bands, thus allowing the generation of dichroic signals in an "interference-free" area of the spectrum. This peculiarity allows for a linear correlation at high wavelengths between the ee of the analyte and anisotropy g-factor. This parameter derives from the differential circularly polarized light absorption of the sample but is independent of concentration. The newly developed sensor based on a simple coordination process has an unprecedented general character in terms of substrate scope and employment.
Collapse
Affiliation(s)
- Paolo Zardi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , 35131 Padova, Italy
| | - Klaus Wurst
- Institut für Allgemeine, Anorganische und Theoretische Chemie, University of Innsbruck , Innrain 80/82, A-6020 Innsbruck, Austria
| | - Giulia Licini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , 35131 Padova, Italy
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , 35131 Padova, Italy
| |
Collapse
|
30
|
Shcherbakova EG, Brega V, Lynch VM, James TD, Anzenbacher P. High-Throughput Assay for Enantiomeric Excess Determination in 1,2- and 1,3-Diols and Direct Asymmetric Reaction Screening. Chemistry 2017; 23:10222-10229. [PMID: 28543938 DOI: 10.1002/chem.201701923] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Indexed: 11/12/2022]
Abstract
A simple and efficient method for determination of the yield, enantiomeric/diasteriomeric excess (ee/de), and absolute configuration of crude chiral diols without the need of work-up and product isolation in a high throughput setting is described. This approach utilizes a self-assembled iminoboronate ester formed as a product by dynamic covalent self-assembly of a chiral diol with an enantiopure fluorescent amine such as tryptophan methyl ester or tryptophanol and 2-formylphenylboronic acid. The resulting diastereomeric boronates display different photophysical properties and allow for fluorescence-based ee determination of molecules containing a 1,2- or 1,3-diol moiety. This method has been utilized for the screening of ee in a number of chiral diols including atorvastatin, a statin used for the treatment of hypercholesterolemia. Noyori asymmetric hydrogenation of benzil was performed in a highly parallel fashion with errors <1 % ee confirming the feasibility of the systematic examination of crude products from the parallel asymmetric synthesis in real time and in a high-throughput screening (HTS) fashion.
Collapse
Affiliation(s)
- Elena G Shcherbakova
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Valentina Brega
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Vincent M Lynch
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Pavel Anzenbacher
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
31
|
Wang LL, Chen Z, Liu WE, Ke H, Wang SH, Jiang W. Molecular Recognition and Chirality Sensing of Epoxides in Water Using Endo-Functionalized Molecular Tubes. J Am Chem Soc 2017; 139:8436-8439. [PMID: 28609613 DOI: 10.1021/jacs.7b05021] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chiral epoxides are important intermediates in chemistry and biology. The high-throughput screening of asymmetric epoxidation conditions requires fast determination of the absolute configurations and ee values of chiral epoxides. Herein, we report molecular recognition and chiroptical sensing of epoxides in water using endo-functionalized molecular tubes. The absolute configurations and ee values were simultaneously determined by circular dichroism spectroscopy. In addition, real-time monitoring as well as the application to real asymmetric epoxidation was demonstrated. The method is simple, environmentally friendly, and amenable to high-throughput screening.
Collapse
Affiliation(s)
- Li-Li Wang
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Zhao Chen
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, China
| | - Wei-Er Liu
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, China
| | - Hua Ke
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Sheng-Hua Wang
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, China
| | - Wei Jiang
- Department of Chemistry, South University of Science and Technology of China , Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
32
|
Scaramuzzo FA, Badetti E, Licini G, Zonta C. Second-Generation Tris(2-pyridylmethyl)amine-Zinc Complexes as Probes for Enantiomeric Excess Determination of Amino Acids. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Francesca A. Scaramuzzo
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; Via Marzolo 1 35131 Padova Italy
| | - Elena Badetti
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; Via Marzolo 1 35131 Padova Italy
| | - Giulia Licini
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; Via Marzolo 1 35131 Padova Italy
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
33
|
Wu X, Chen XX, Jiang YB. Recent advances in boronic acid-based optical chemosensors. Analyst 2017; 142:1403-1414. [DOI: 10.1039/c7an00439g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This minireview highlights the developments in optical chemosensors from 2014 to 2016 that utilise the boronic acid interaction with polyols or Lewis bases.
Collapse
Affiliation(s)
- Xin Wu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- and iChEM
- Xiamen University
| | - Xuan-Xuan Chen
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- and iChEM
- Xiamen University
| | - Yun-Bao Jiang
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- and iChEM
- Xiamen University
| |
Collapse
|