1
|
Zhang S, Fan S, He H, Zhu J, Murray L, Liang G, Ran S, Zhu YZ, Cryle MJ, He HY, Zhang Y. Cyclic natural product oligomers: diversity and (bio)synthesis of macrocycles. Chem Soc Rev 2025; 54:396-464. [PMID: 39584260 DOI: 10.1039/d2cs00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cyclic compounds are generally preferred over linear compounds for functional studies due to their enhanced bioavailability, stability towards metabolic degradation, and selective receptor binding. This has led to a need for effective cyclization strategies for compound synthesis and hence increased interest in macrocyclization mediated by thioesterase (TE) domains, which naturally boost the chemical diversity and bioactivities of cyclic natural products. Many non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) derived natural products are assembled to form cyclodimeric compounds, with these molecules possessing diverse structures and biological activities. There is significant interest in identifying the biosynthetic pathways that produce such molecules given the challenge that cyclodimerization represents from a biosynthetic perspective. In the last decade, many groups have pursued the characterization of TE domains and have provided new insights into this biocatalytic machinery: however, the enzymes involved in formation of cyclodimeric compounds have proven far more elusive. In this review we focus on natural products that involve macrocyclization in their biosynthesis and chemical synthesis, with an emphasis on the function and biosynthetic investigation on the special family of TE domains responsible for forming cyclodimeric natural products. We also introduce additional macrocyclization catalysts, including butelase and the CT-mediated cyclization of peptides, alongside the formation of cyclodipeptides mediated by cyclodipeptide synthases (CDPS) and single-module NRPSs. Due to the interdisciplinary nature of biosynthetic research, we anticipate that this review will prove valuable to synthetic chemists, drug discovery groups, enzymologists, and the biosynthetic community in general, and inspire further efforts to identify and exploit these biocatalysts for the formation of novel bioactive molecules.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lauren Murray
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Gong Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Ran
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhun Zhu
- School of Pharmacy & State Key Lab. for the Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Hai-Yan He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Das S, Pradhan TK, Samanta R. Recent Progress on Transition Metal Catalyzed Macrocyclizations Based on C-H Bond Activation at Heterocyclic Scaffolds. Chem Asian J 2024; 19:e202400397. [PMID: 38924294 DOI: 10.1002/asia.202400397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Macrocycles are essential in protein-protein interactions and the preferential intake of bioactive scaffolds. Macrocycles are commonly synthesized by late-stage macrolactonizations, macrolactamizations, transition metal-catalyzed ring-closing metathesis, S-S bond-forming reactions, and copper-catalyzed alkyne-azide cycloaddition. Recently, transition metal-catalyzed C-H activation strategies have gained significant interest among chemists to synthesize macrocycles. This article provides a comprehensive overview of the transition metal-catalyzed macrocyclization via C-H bond functionalization of heterocycle-containing peptides, annulations, and heterocycle-ring construction through direct C-H bond functionalization. In the first part, palladium salt catalyzed coupling with indolyl C(sp3)-H and C(sp2)-H bonds for macrocyclization is reported. The second part summarizes rhodium-catalyzed macrocyclizations via site-selective C-H bond functionalization. Earth-abundant, less toxic 3d metal salt Mn-catalyzed cyclizations are reported in the latter part. This summary is expected to spark interest in emerging methods of macrocycle production among organic synthesis and chemical biology practitioners, helping to develop the discipline. We hope that this mini-review will also inspire synthetic chemists to explore new and broadly applicable C-C bond-forming strategies for macrocyclization via intramolecular C-H activation.
Collapse
Affiliation(s)
- Sarbojit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tapan Kumar Pradhan
- Department of Chemistry, Krishnath College Berhampore, Murshidabad, West Bengal, 742101
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
3
|
Diamandas M, Heller NW, Yudin AK. Nitrilium ion trapping as a strategy to access structurally diverse heterobiaryl-containing peptide macrocycles. Chem Sci 2023; 14:9482-9487. [PMID: 37712035 PMCID: PMC10498670 DOI: 10.1039/d3sc03058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Biaryl and heterobiaryl-containing cyclic peptides represent promising scaffolds for the development of bioactive molecules. The incorporation of heterobiaryl motifs continues to pose synthetic challenges, which is partially due to the difficulties in effecting late-stage metal-catalyzed cross-couplings. We report a new strategy to form heterobiaryls that is based on trapping nitrilium ions. The sequence is exemplified using oxadiazole- and oxazole-containing biaryl linkages. NMR analysis and molecular dynamics simulations reveal structural control elements common to each member of the heterobiaryl containing peptide family in this study. Strategic substitutions on the C-terminal aminobenzoic acid moiety paired with installation of oxadiazole or oxazole heterobiaryl backbone linkages allow for the modulation of peptide backbone conformation, which should assist efforts to optimize the biophysical properties of peptide macrocycles.
Collapse
Affiliation(s)
- Matthew Diamandas
- Department of Chemistry, University of Toronto Toronto ON M5S 3H6 Canada
| | - Nicholas W Heller
- Department of Chemistry, University of Toronto Toronto ON M5S 3H6 Canada
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto Toronto ON M5S 3H6 Canada
| |
Collapse
|
4
|
Wang P, Liu J, Zhu X, Yan Z, Yan J, Jiang J, Fu M, Ge J, Zhu Q, Zheng Y. Modular synthesis of clickable peptides via late-stage maleimidation on C(7)-H tryptophan. Nat Commun 2023; 14:3973. [PMID: 37407547 DOI: 10.1038/s41467-023-39703-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Cyclic peptides have attracted tremendous attention in the pharmaceutical industry owing to their excellent cell penetrability, stability, thermostability, and drug-like properties. However, the currently available facile methodologies for creating such peptides are rather limited. Herein, we report an efficient and direct peptide cyclization via rhodium(III)-catalyzed C(7)-H maleimidation. Notably, this catalytical system has excellent regioselectivity and high tolerance of functional groups which enable late-stage cyclization of peptides. This architecture of cyclic peptides exhibits higher bioactivity than its parent linear peptides. Moreover, the Trp-substituted maleimide displays excellent reactivity toward Michael addition, indicating its potential as a click functional group for applications in chemical biology and medicinal chemistry. As a proof of principle, RGD-GFLG-DOX, which is a peptide-drug-conjugate, is constructed and it displays a strong binding affinity and high antiproliferative activity toward integrin-αvβ3 overexpressed cancer cell lines. The proposed strategy for rapid preparation of stapled peptides would be a robust tool for creating peptide-drug conjugates.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaomei Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengqing Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiahui Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jitong Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Manlin Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
5
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
6
|
Song B, Guo X, Yang L, Yu H, Zong X, Liu X, Wang H, Xu Z, Lin Z, Yang W. Rhodium(III)-Catalyzed C-H/O 2 Dual Activation and Macrocyclization: Synthesis and Evaluation of Pyrido[2,1-a]isoindole Grafted Macrocyclic Inhibitors for Influenza H1N1. Angew Chem Int Ed Engl 2023; 62:e202218886. [PMID: 36788706 DOI: 10.1002/anie.202218886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The development of environment-friendly, step economic couplings to generate structurally diverse macrocyclic compounds is highly desirable but poses a marked challenge. Inspired by the C-H oxidation mechanism of cytochromes P450, an unprecedented and practical RhIII -catalyzed acylmethylation macrocyclization via C-H/O2 dual activation has been developed by us. The process of macrocyclization is facilitated by a synergic coordination from pyridine and ester group. Interestingly, the reaction mode derives from a three-component coupling which differs from established olefination and alkylation paths. Density functional theory (DFT) calculations and control experiments revealed the mechanism of this unique C-H/O2 dual activation. The newly achieved acylmethylation macrocyclic products and their derivatives showed a potent anti-H1N1 bioactivity, which may provide an opportunity for the discovery of novel anti-H1N1 macrocyclic leading compounds.
Collapse
Affiliation(s)
- Bichao Song
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China
| | - Li Yang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyue Yu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlei Zong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xiujuan Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hao Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongliang Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China
| | - Weibo Yang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210000, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
7
|
Bold CP, Lucena-Agell D, Oliva MÁ, Díaz JF, Altmann KH. Synthesis and Biological Evaluation of C(13)/C(13')-Bis(desmethyl)disorazole Z. Angew Chem Int Ed Engl 2023; 62:e202212190. [PMID: 36281761 PMCID: PMC10107878 DOI: 10.1002/anie.202212190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
We describe the total synthesis of the macrodiolide C(13)/C(13')-bis(desmethyl)disorazole Z through double inter-/intramolecular Stille cross-coupling of a monomeric vinyl stannane/vinyl iodide precursor to form the macrocycle. The key step in the synthesis of this precursor was a stereoselective aldol reaction of a formal Evans acetate aldol product with crotonaldehyde. As demonstrated by X-ray crystallography, the binding mode of C(13)/C(13')-bis(desmethyl)disorazole Z to tubulin is virtually identical with that of the natural product disorazole Z. Likewise, C(13)/C(13')-bis(desmethyl)disorazole Z inhibits tubulin assembly with at least the same potency as disorazole Z and it appears to be a more potent cell growth inhibitor.
Collapse
Affiliation(s)
- Christian Paul Bold
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Ángela Oliva
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
8
|
Li J, Sun J, Zhang X, Zhang R, Wang Q, Wang L, Zhang L, Xie X, Li C, Zhou Y, Wang J, Xiao G, Bai F, Liu H. Synthesis of maleimide-braced peptide macrocycles and their potential anti-SARS-CoV-2 mechanisms. Chem Commun (Camb) 2023; 59:868-871. [PMID: 36546610 DOI: 10.1039/d2cc06371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrocycles often exhibit good biological properties and potential druggability, which lead to versatile applications in the pharmaceutical industry. Herein, we report a highly efficient and practical methodology for the functionalization and macrocyclization of Trp and Trp-containing peptides via Pd(II)-catalyzed C-H alkenylation at the Trp C4 position. This method provides direct access to C4 maleimide-decorated Trp-containing peptidomimetics and maleimide-braced 17- to 30-membered peptide macrocycles. In particular, these unique macrocycles revealed low micro- to sub-micromolar EC50 values with promising anti-SARS-CoV-2 activities. Further explorations with computational methodologies and experimental validations indicated that these macrocycles exert antiviral effects through binding with the N protein of SARS-CoV-2.
Collapse
Affiliation(s)
- Jian Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jina Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xianglei Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Ruxue Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Qian Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
9
|
Liu L, Fan X, Wang B, Deng H, Wang T, Zheng J, Chen J, Shi Z, Wang H. P
III
‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206177. [DOI: 10.1002/anie.202206177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Lei Liu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Xinlong Fan
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Boning Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Hong Deng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jun Chen
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
10
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
11
|
LIU LEI, FAN XINLONG, WANG BONING, DENG HONG, WANG TIANHANG, ZHENG JIE, CHEN JUN, SHI ZHUANGZHI, Wang H. P(III)‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- LEI LIU
- Nanjing University CHEMISTRY AND CHEMICAL ENGINEERING CHINA
| | | | | | | | | | | | - JUN CHEN
- Nanjing University CHEMISTRY CHINA
| | | | - Huan Wang
- Nanjing University Chemistry and Chemical Engineering 163 Xianlin Ave.Chemistry Building, E504 210023 Nanjing CHINA
| |
Collapse
|
12
|
Liu J, Wang P, Zeng W, Lu Q, Zhu Q. Late-stage construction of stapled peptides through Fujiwara-Moritani reaction between tryptophan and olefins. Chem Commun (Camb) 2021; 57:11661-11664. [PMID: 34671802 DOI: 10.1039/d1cc04202e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, the first example of a palladium-catalyzed Fujiwara-Moritani reaction for olefination of tryptophan (Trp) residues, free from directing groups, was presented. The developed reaction proceeds efficiently for peptide modification, ligation and peptide stapling.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Peng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wei Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qi Lu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
13
|
Zhao X, Li B, Xu J, Tang Q, Cai Z, Jiang X. Visible-Light-Driven Redox Neutral Direct C-H Amination of Glycine Derivatives and Peptides with N-Acyloxyphthalimides. Chemistry 2021; 27:12540-12544. [PMID: 34164860 DOI: 10.1002/chem.202101982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 12/12/2022]
Abstract
A room temperature, visible-light-promoted and redox neutral direct C-H amination of glycine and peptides has been firstly accomplished by using N-acyloxyphthalimide or -succinimide as nitrogen-radical precursor. The present strategy provides ways to introduce functionalities such as N-acyloxyphthalimide or -succinimide specifically to terminal glycine segment of peptides. Herein, mild conditions and high functional-group tolerance allow the preparation of non-natural α-amino acids and modification of corresponding peptides in this way.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bai Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jingyao Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qinglin Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhengjun Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
14
|
Zhang Q, Xie X, Peng J, Chen F, Ma J, Li C, Liu H, Wang D, Wang J. Direct C4-Acetoxylation of Tryptophan and Tryptophan-Containing Peptides via Palladium(II)-Catalyzed C-H Activation. Org Lett 2021; 23:4699-4704. [PMID: 34060854 DOI: 10.1021/acs.orglett.1c01434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient regioselective palladium(II)-catalyzed C(sp2)-H 4-acetoxylation of tryptophan and tryptophan-containing peptides is described. This transformation achieves the direct construction of C-O bonds at the tryptophan C4-position and features good functional group tolerance. The 4-hydroxyl compound was obtained by removing acetyl after C4-acetoxylation of tryptophan derivatives and tryptophan-containing dipeptides. This method provides a novel strategy for the synthesis of 4-substituted tryptophan derivatives and modification of tryptophan-containing peptides.
Collapse
Affiliation(s)
- Qiyu Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jingjing Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Feiyang Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jinyu Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Dechuan Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
15
|
Song L, Ojeda‐Carralero GM, Parmar D, González‐Martínez DA, Van Meervelt L, Van der Eycken J, Goeman J, Rivera DG, Van der Eycken EV. Chemoselective Peptide Backbone Diversification and Bioorthogonal Ligation by Ruthenium‐Catalyzed C−H Activation/Annulation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Gerardo M. Ojeda‐Carralero
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Center for Natural Product Research Faculty of Chemistry University of Havana Zapata y G 10400 Havana Cuba
| | - Divyaakshar Parmar
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - David A. González‐Martínez
- Center for Natural Product Research Faculty of Chemistry University of Havana Zapata y G 10400 Havana Cuba
| | - Luc Van Meervelt
- Biomolecular Architecture Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bio-Organic Synthesis Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 (S.4) B-9000 Ghent Belgium
| | - Jan Goeman
- Laboratory for Organic and Bio-Organic Synthesis Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 (S.4) B-9000 Ghent Belgium
| | - Daniel G. Rivera
- Center for Natural Product Research Faculty of Chemistry University of Havana Zapata y G 10400 Havana Cuba
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 Moscow 117198 Russia
| |
Collapse
|
16
|
Liu J, Wang P, Yan Z, Yan J, Kenry, Zhu Q. Recent Advances in Late-Stage Construction of Stapled Peptides via C-H Activation. Chembiochem 2021; 22:2762-2771. [PMID: 33949069 DOI: 10.1002/cbic.202100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Indexed: 01/09/2023]
Abstract
Stapled peptides have been widely applied in many fields, including pharmaceutical chemistry, diagnostic reagents, and materials science. However, most traditional stapled peptide preparation methods rely on prefunctionalizations, which limit the diversity of stapled peptides. Recently, the emergence of late-stage transition metal-catalyzed C-H activation in amino acids and peptides has attracted wide interest due to its robustness and applicability for peptide stapling. In this review, we summarize the methods for late-stage construction of stapled peptides via transition metal-catalyzed C-H activation.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Peng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhengqing Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jiahui Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kenry
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
17
|
Kemker I, Schröder DC, Feiner RC, Müller KM, Marion A, Sewald N. Tuning the Biological Activity of RGD Peptides with Halotryptophans†. J Med Chem 2020; 64:586-601. [PMID: 33356253 DOI: 10.1021/acs.jmedchem.0c01536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An array of l- and d-halotryptophans with different substituents at the indole moiety was synthesized employing either enzymatic halogenation by halogenases or incorporation of haloindoles using tryptophan synthase. Introduction of these Trp derivatives into RGD peptides as a benchmark system was performed to investigate their influence on bioactivity. Halotryptophan-containing RGD peptides display increased affinity toward integrin αvβ3 and enhanced selectivity over integrin α5β1. In addition, bromotryptophan was exploited as a platform for late-stage diversification by Suzuki-Miyaura cross-coupling (SMC), resulting in new-to-nature biaryl motifs. These peptides show enhanced affinity toward αvβ3, good affinity to αvβ8, and remarkable selectivity over α5β1 and αIIbβ3 while featuring fluorogenic properties. Their feasibility as a probe was demonstrated in vitro. Extensive molecular dynamics simulations were undertaken to elucidate NMR and high-performance liquid chromatography (HPLC) data for these late-stage diversified cyclic RGD peptides and to further characterize their conformational preferences.
Collapse
Affiliation(s)
- Isabell Kemker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - David C Schröder
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Rebecca C Feiner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, Kimya Bölümü Üniversiteler Mah., Çankaya, 06800 Ankara, Turkey
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.,Department of Chemistry, Middle East Technical University, Kimya Bölümü Üniversiteler Mah., Çankaya, 06800 Ankara, Turkey
| |
Collapse
|
18
|
Rivera DG, Ojeda-Carralero GM, Reguera L, Van der Eycken EV. Peptide macrocyclization by transition metal catalysis. Chem Soc Rev 2020; 49:2039-2059. [PMID: 32142086 DOI: 10.1039/c9cs00366e] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptide macrocyclization has traditionally relied on lactam, lactone and disulfide bond-forming reactions that aim at introducing conformational constraints into small peptide sequences. With the advent of ruthenium-catalyzed ring-closing metathesis and copper-catalyzed alkyne-azide cycloaddition, peptide chemists embraced transition metal catalysis as a powerful macrocyclization tool with relevant applications in chemical biological and peptide drug discovery. This article provides a comprehensive overview of the reactivity and methodological diversification of metal-catalyzed peptide macrocyclization as a special class of late-stage peptide derivatization method. We report the evolution from classic palladium-catalyzed cross-coupling approaches to more modern oxidative versions based on C-H activation, heteroatom alkylation/arylation and annulation processes, in which aspects such as chemoselectivity and diversity generation at the ring-closing moiety became dominant over the last years. The transit from early cycloadditions and alkyne couplings as ring-closing steps to very recent 3d metal-catalyzed macrocyclization methods is highlighted. Similarly, the new trends in decarboxylative radical macrocyclizations and the interplay between photoredox and transition metal catalysis are included. This review charts future perspectives in the field hoping to encourage further progress and applications, while bringing attention to the countless possibilities available by diversifying not only the metal, but also the reactivity modes and tactics to bring peptide functional groups together and produce structurally diverse macrocycles.
Collapse
Affiliation(s)
- Daniel G Rivera
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Gerardo M Ojeda-Carralero
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Leslie Reguera
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
19
|
Bai Z, Cai C, Sheng W, Ren Y, Wang H. Late‐Stage Peptide Macrocyclization by Palladium‐Catalyzed Site‐Selective C−H Olefination of Tryptophan. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zengbing Bai
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 P. R. China
| | - Chuangxu Cai
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 P. R. China
| | - Wangjian Sheng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 P. R. China
| | - Yuxiang Ren
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 P. R. China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 P. R. China
| |
Collapse
|
20
|
Bai Z, Cai C, Sheng W, Ren Y, Wang H. Late-Stage Peptide Macrocyclization by Palladium-Catalyzed Site-Selective C-H Olefination of Tryptophan. Angew Chem Int Ed Engl 2020; 59:14686-14692. [PMID: 32511858 DOI: 10.1002/anie.202007226] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Transition-metal-catalyzed C-H activation has shown potential in the functionalization of peptides with expanded structural diversity. Herein, the development of late-stage peptide macrocyclization methods by palladium-catalyzed site-selective C(sp2 )-H olefination of tryptophan residues at the C2 and C4 positions is reported. This strategy utilizes the peptide backbone as endogenous directing groups and provides access to peptide macrocycles with unique Trp-alkene crosslinks.
Collapse
Affiliation(s)
- Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, P. R. China
| | - Chuangxu Cai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, P. R. China
| | - Wangjian Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, P. R. China
| | - Yuxiang Ren
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, P. R. China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, P. R. China
| |
Collapse
|
21
|
Sengupta S, Mehta G. Macrocyclization via C-H functionalization: a new paradigm in macrocycle synthesis. Org Biomol Chem 2020; 18:1851-1876. [PMID: 32101232 DOI: 10.1039/c9ob02765c] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The growing emphasis on macrocycles in engaging difficult therapeutic targets such as protein-protein interactions and GPCRs via preferential adaptation of bioactive and cell penetrating conformations has provided impetus to the search for de novo macrocyclization strategies that are efficient, chemically robust and amenable to diversity creation. An emerging macrocyclization paradigm based on the C-H activation logic, of particular promise in the macrocyclization of complex peptides, has added a new dimension to this pursuit, enabling efficacious access to macrocycles of various sizes and topologies with high atom and step economy. Significant achievements in macrocyclization methodologies and their applications in the synthesis of bioactive natural products and drug-like molecules, employing strategic variations of C-H activation are captured in this review. It is expected that this timely account will foster interest in newer ways of macrocycle construction among practitioners of organic synthesis and chemical biology to advance the field.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad-5000 046, Telengana, India.
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad-5000 046, Telengana, India.
| |
Collapse
|
22
|
Wang C, Qi R, Xue H, Shen Y, Chang M, Chen Y, Wang R, Xu Z. Visible-Light-Promoted C(sp 3 )-H Alkylation by Intermolecular Charge Transfer: Preparation of Unnatural α-Amino Acids and Late-Stage Modification of Peptides. Angew Chem Int Ed Engl 2020; 59:7461-7466. [PMID: 32078758 DOI: 10.1002/anie.201914555] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/16/2020] [Indexed: 02/03/2023]
Abstract
Disclosed herein is the visible-light-promoted deaminative C(sp3 )-H alkylation of glycine and peptides using Katritzky salts as electrophiles. Simple reaction conditions and excellent functional-group tolerance provide a general strategy for the efficient preparation of unnatural α-amino acids and precise modification of peptides with unnatural α-amino-acid residues. Mechanistic studies suggest that visible-light-promoted intermolecular charge transfer within a glycine-Katritzky salt electron donor-acceptor (EDA) complex induces a single-electron transfer process without the assistance of photocatalyst.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Rupeng Qi
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Hongxiang Xue
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Yuxuan Shen
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Yaqiong Chen
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Rui Wang
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhaoqing Xu
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| |
Collapse
|
23
|
Wang C, Qi R, Xue H, Shen Y, Chang M, Chen Y, Wang R, Xu Z. Visible‐Light‐Promoted C(sp
3
)−H Alkylation by Intermolecular Charge Transfer: Preparation of Unnatural α‐Amino Acids and Late‐Stage Modification of Peptides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914555] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chao Wang
- Institute of Drug Design & SynthesisInstitute of PharmacologyKey Laboratory of Preclinical Study for New Drugs of Gansu ProvinceSchool of Basic Medical ScienceLanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Rupeng Qi
- Institute of Drug Design & SynthesisInstitute of PharmacologyKey Laboratory of Preclinical Study for New Drugs of Gansu ProvinceSchool of Basic Medical ScienceLanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Hongxiang Xue
- Institute of Biochemistry and Molecular BiologySchool of Life SciencesLanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Yuxuan Shen
- Institute of Biochemistry and Molecular BiologySchool of Life SciencesLanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Min Chang
- Institute of Biochemistry and Molecular BiologySchool of Life SciencesLanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Yaqiong Chen
- Institute of Drug Design & SynthesisInstitute of PharmacologyKey Laboratory of Preclinical Study for New Drugs of Gansu ProvinceSchool of Basic Medical ScienceLanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Rui Wang
- Institute of Drug Design & SynthesisInstitute of PharmacologyKey Laboratory of Preclinical Study for New Drugs of Gansu ProvinceSchool of Basic Medical ScienceLanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Zhaoqing Xu
- Institute of Drug Design & SynthesisInstitute of PharmacologyKey Laboratory of Preclinical Study for New Drugs of Gansu ProvinceSchool of Basic Medical ScienceLanzhou University 199 West Donggang Road Lanzhou 730000 China
| |
Collapse
|
24
|
Peng J, Li C, Khamrakulov M, Wang J, Liu H. Rhodium(III)-Catalyzed C–H Alkenylation: Access to Maleimide-Decorated Tryptophan and Tryptophan-Containing Peptides. Org Lett 2020; 22:1535-1541. [DOI: 10.1021/acs.orglett.0c00086] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingjing Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mirzadavlat Khamrakulov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
25
|
Bai Q, Bai Z, Wang H. Macrocyclization of Biaryl-Bridged Peptides through Late-Stage Palladium-Catalyzed C(sp2)–H Arylation. Org Lett 2019; 21:8225-8228. [DOI: 10.1021/acs.orglett.9b02945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qingqing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Song L, Tian G, Blanpain A, Van Meervelt L, Van der Eycken EV. Diversification of Peptidomimetics and Oligopeptides through Microwave‐Assisted Rhodium(III)‐Catalyzed Intramolecular Annulation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Guilong Tian
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Anna Blanpain
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 Moscow Russia
| |
Collapse
|
27
|
Late-stage peptide C-H alkylation for bioorthogonal C-H activation featuring solid phase peptide synthesis. Nat Commun 2019; 10:3553. [PMID: 31391461 PMCID: PMC6685959 DOI: 10.1038/s41467-019-11395-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 07/13/2019] [Indexed: 01/09/2023] Open
Abstract
Methods for the late-stage diversification of structurally complex peptides hold enormous potential for advances in drug discovery, agrochemistry and pharmaceutical industries. While C-H arylations emerged for peptide modifications, they are largely limited to highly reactive, expensive and/or toxic reagents, such as silver(I) salts, in superstoichiometric quantities. In sharp contrast, we herein establish the ruthenium(II)-catalyzed C-H alkylation on structurally complex peptides. The additive-free ruthenium(II)carboxylate C-H activation manifold is characterized by ample substrate scope, racemization-free conditions and the chemo-selective tolerance of otherwise reactive functional groups, such as electrophilic ketone, bromo, ester, amide and nitro substituents. Mechanistic studies by experiment and computation feature an acid-enabled C-H ruthenation, along with a notable protodemetalation step. The transformative peptide C-H activation regime sets the stage for peptide ligation in solution and proves viable in a bioorthogonal fashion for C-H alkylations on user-friendly supports by means of solid phase peptide syntheses.
Collapse
|
28
|
Benzai A, Shi X, Derridj F, Roisnel T, Doucet H, Soulé JF. Late-Stage Diversification of Imidazole-Based Pharmaceuticals through Pd-Catalyzed Regioselective C–H Bond Arylations. J Org Chem 2019; 84:13135-13143. [DOI: 10.1021/acs.joc.9b01469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Amal Benzai
- Univ Rennes, CNRS UMR6226, F-3500 Rennes, France
- Laboratoire de Physique et Chimie des Matériaux (LPCM), UMMTO University, BP 17 RP, 15000 Tizi-Ouzou, Algeria
| | - Xinzhe Shi
- Univ Rennes, CNRS UMR6226, F-3500 Rennes, France
| | - Fazia Derridj
- Laboratoire de Physique et Chimie des Matériaux (LPCM), UMMTO University, BP 17 RP, 15000 Tizi-Ouzou, Algeria
| | | | - Henri Doucet
- Univ Rennes, CNRS UMR6226, F-3500 Rennes, France
| | | |
Collapse
|
29
|
Wang W, Subramanian P, Martinazzoli O, Wu J, Ackermann L. Glycopeptides by Linch‐Pin C−H Activations for Peptide‐Carbohydrate Conjugation by Manganese(I)‐Catalysis. Chemistry 2019; 25:10585-10589. [DOI: 10.1002/chem.201902788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Parthasarathi Subramanian
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Oscar Martinazzoli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
30
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
31
|
|
32
|
Zheng Y, Song W. Pd-Catalyzed Site-Selective C(sp2)–H Olefination and Alkynylation of Phenylalanine Residues in Peptides. Org Lett 2019; 21:3257-3260. [DOI: 10.1021/acs.orglett.9b00987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yong Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Weibin Song
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
33
|
Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Arylation Chemistry for Bioconjugation. Angew Chem Int Ed Engl 2019; 58:4810-4839. [PMID: 30399206 PMCID: PMC6433541 DOI: 10.1002/anie.201806009] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Bioconjugation chemistry has been used to prepare modified biomolecules with functions beyond what nature intended. Central to these techniques is the development of highly efficient and selective bioconjugation reactions that operate under mild, biomolecule compatible conditions. Methods that form a nucleophile-sp2 carbon bond show promise for creating bioconjugates with new modifications, sometimes resulting in molecules with unparalleled functions. Here we outline and review sulfur, nitrogen, selenium, oxygen, and carbon arylative bioconjugation strategies and their applications to modify peptides, proteins, sugars, and nucleic acids.
Collapse
Affiliation(s)
- Chi Zhang
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| | - Ekaterina V. Vinogradova
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
- Dr. E. V. Vinogradova, The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander M. Spokoyny
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
- Prof. Dr. A. M. Spokoyny, Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Stephen L. Buchwald
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| | - Bradley L. Pentelute
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| |
Collapse
|
34
|
Ng-Choi I, Oliveras À, Feliu L, Planas M. Solid-phase synthesis of biaryl bicyclic peptides containing a 3-aryltyrosine or a 4-arylphenylalanine moiety. Beilstein J Org Chem 2019; 15:761-768. [PMID: 30992724 PMCID: PMC6444451 DOI: 10.3762/bjoc.15.72] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
Abstract
A methodology for the solid-phase synthesis of biaryl bicyclic peptides containing a Phe-Phe, a Phe-Tyr or a Tyr-Tyr motif has been devised. This approach comprises two key steps. The first one involves the cyclization of a linear peptidyl resin containing the corresponding halo- and boronoamino acids via a microwave-assisted Suzuki–Miyaura cross coupling. This step is followed by the macrolactamization of the resulting biaryl monocyclic peptidyl resin leading to the formation of the expected biaryl bicyclic peptide. This study provides the first solid-phase synthesis of this type of bicyclic compounds being amenable to prepare a diversity of synthetic or natural biaryl bicyclic peptides.
Collapse
Affiliation(s)
- Iteng Ng-Choi
- LIPPSO, Departament de Química, University of Girona, Maria Aurèlia Capmany 69, Girona 17003, Spain
| | - Àngel Oliveras
- LIPPSO, Departament de Química, University of Girona, Maria Aurèlia Capmany 69, Girona 17003, Spain
| | - Lidia Feliu
- LIPPSO, Departament de Química, University of Girona, Maria Aurèlia Capmany 69, Girona 17003, Spain
| | - Marta Planas
- LIPPSO, Departament de Química, University of Girona, Maria Aurèlia Capmany 69, Girona 17003, Spain
| |
Collapse
|
35
|
Zhan BB, Fan J, Jin L, Shi BF. Divergent Synthesis of Silicon-Containing Peptides via Pd-Catalyzed Post-Assembly γ-C(sp3)–H Silylation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00544] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bei-Bei Zhan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jun Fan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Liang Jin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
36
|
Tan J, Wu J, Liu S, Yao H, Wang H. Macrocyclization of peptidoarylacetamides with self-assembly properties through late-stage palladium-catalyzed C(sp 2)▬H olefination. SCIENCE ADVANCES 2019; 5:eaaw0323. [PMID: 30873434 PMCID: PMC6408153 DOI: 10.1126/sciadv.aaw0323] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/28/2019] [Indexed: 05/04/2023]
Abstract
Peptide macrocycles often display diverse bioactivities and self-assembly properties, which lead to a variety of applications in medicinal and material sciences. Transition metal-catalyzed C▬H activations are emerging strategies for site-selective functionalization of amino acids and peptides, as well as the construction of cyclic peptides. Here, we report the development of a peptide-directed method for the macrocyclization of peptidoarylacetamides by Pd(II)-catalyzed late-stage C(sp2)▬H olefination. In this protocol, peptide backbones act as internal directing groups and enable facile preparation of diverse cyclic peptides that are difficult to synthesize by conventional macrolactamization. Furthermore, we show that the incorporation of aryl-alkene cross-link in the backbone constrains cyclic peptides into conformations for self-assembly.
Collapse
Affiliation(s)
- Jiantao Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210093, P.R. China
| | - Jie Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Shu Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210093, P.R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210093, P.R. China
- Corresponding author.
| |
Collapse
|
37
|
Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Arylierungschemie für die Biokonjugation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chi Zhang
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Ekaterina V. Vinogradova
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- The Skaggs Institute for Chemical Biology and Department of Molecular MedicineThe Scripps Research Institute La Jolla CA 92037 USA
| | - Alexander M. Spokoyny
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Stephen L. Buchwald
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
38
|
Kaplaneris N, Rogge T, Yin R, Wang H, Sirvinskaite G, Ackermann L. Late-Stage Diversification through Manganese-Catalyzed C−H Activation: Access to Acyclic, Hybrid, and Stapled Peptides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812705] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammanstraße 2 37077 Göttingen Germany
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammanstraße 2 37077 Göttingen Germany
| | - Rongxin Yin
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammanstraße 2 37077 Göttingen Germany
| | - Hui Wang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammanstraße 2 37077 Göttingen Germany
| | - Giedre Sirvinskaite
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammanstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammanstraße 2 37077 Göttingen Germany
| |
Collapse
|
39
|
Kaplaneris N, Rogge T, Yin R, Wang H, Sirvinskaite G, Ackermann L. Late-Stage Diversification through Manganese-Catalyzed C-H Activation: Access to Acyclic, Hybrid, and Stapled Peptides. Angew Chem Int Ed Engl 2019; 58:3476-3480. [PMID: 30565829 DOI: 10.1002/anie.201812705] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 12/16/2022]
Abstract
Bioorthogonal C-H allylation with ample scope was accomplished through a versatile manganese(I)-catalyzed C-H activation for the late-stage diversification of structurally complex peptides. The unique robustness of the manganese(I) catalysis manifold was reflected by full tolerance of sensitive functional groups, such as iodides, esters, amides, and OH-free hydroxy groups, thereby setting the stage for the racemization-free synthesis of C-H fused peptide hybrids featuring steroids, drug molecules, natural products, nucleobases, and saccharides.
Collapse
Affiliation(s)
- Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Rongxin Yin
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Hui Wang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Giedre Sirvinskaite
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
40
|
Lorion MM, Kaplaneris N, Son J, Kuniyil R, Ackermann L. Late‐Stage Peptide Diversification through Cobalt‐Catalyzed C−H Activation: Sequential Multicatalysis for Stapled Peptides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811668] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mélanie M. Lorion
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Jongwoo Son
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
- DZHK (German Center for Cardiovascular Research) Germany
| |
Collapse
|
41
|
Lorion MM, Kaplaneris N, Son J, Kuniyil R, Ackermann L. Late-Stage Peptide Diversification through Cobalt-Catalyzed C-H Activation: Sequential Multicatalysis for Stapled Peptides. Angew Chem Int Ed Engl 2019; 58:1684-1688. [PMID: 30499607 DOI: 10.1002/anie.201811668] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/25/2018] [Indexed: 11/09/2022]
Abstract
Bioorthogonal late-stage diversification of structurally complex peptides has enormous potential for drug discovery and molecular imaging. In recent years, transition-metal-catalyzed C-H activation has emerged as an increasingly viable tool for peptide modification. Despite major accomplishments, these strategies largely rely on expensive palladium catalysts. We herein report an unprecedented cobalt(III)-catalyzed peptide C-H activation, which enables the direct C-H functionalization of structurally complex peptides, and sets the stage for a multicatalytic C-H activation/alkene metathesis/hydrogenation strategy for the assembly of novel cyclic peptides.
Collapse
Affiliation(s)
- Mélanie M Lorion
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstr. 2, 37077, Göttingen, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstr. 2, 37077, Göttingen, Germany
| | - Jongwoo Son
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstr. 2, 37077, Göttingen, Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstr. 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstr. 2, 37077, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Germany
| |
Collapse
|
42
|
Bai Z, Cai C, Yu Z, Wang H. Backbone‐Enabled Directional Peptide Macrocyclization through Late‐Stage Palladium‐Catalyzed δ‐C(sp
2
)−H Olefination. Angew Chem Int Ed Engl 2018; 57:13912-13916. [DOI: 10.1002/anie.201807953] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Zengbing Bai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Chuangxu Cai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zonglun Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Huan Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
43
|
Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Late-Stage Peptide Diversification by Position-Selective C−H Activation. Angew Chem Int Ed Engl 2018; 57:14700-14717. [DOI: 10.1002/anie.201806250] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Germany
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Germany
| | - Jagrut Shah
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 India
| | - Anant R. Kapdi
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 India
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Germany
- Department of Chemistry; University of Pavia; Viale Taramelli, 10 27100 Pavia Italy
- DZHK (German Centre for Cardiovascular Research); Germany
| |
Collapse
|
44
|
Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Peptid-Diversifizierung durch positionsselektive C-H-Aktivierung im späten Synthesestadium. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806250] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Deutschland
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Deutschland
| | - Jagrut Shah
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 Indien
| | - Anant R. Kapdi
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 Indien
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Deutschland
- Department of Chemistry; University of Pavia; Viale Taramelli, 10 27100 Pavia Italien
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung); Deutschland
| |
Collapse
|
45
|
Bai Z, Cai C, Yu Z, Wang H. Backbone‐Enabled Directional Peptide Macrocyclization through Late‐Stage Palladium‐Catalyzed δ‐C(sp
2
)−H Olefination. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zengbing Bai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Chuangxu Cai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zonglun Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Huan Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
46
|
Brandhofer T, García Mancheño O. Site-Selective C-H Bond Activation/Functionalization of Alpha-Amino Acids and Peptide-Like Derivatives. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800896] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tobias Brandhofer
- Organic Chemistry Institute; Münster University; Corrensstraße 40 48149 Münster Germany
- Institute for Organic Chemistry; University of Regensburg; Universitätsstraße 31 93053 Regensburg Germany
| | - Olga García Mancheño
- Organic Chemistry Institute; Münster University; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
47
|
Peptide-guided functionalization and macrocyclization of bioactive peptidosulfonamides by Pd(II)-catalyzed late-stage C-H activation. Nat Commun 2018; 9:3383. [PMID: 30139997 PMCID: PMC6107497 DOI: 10.1038/s41467-018-05440-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Peptides and peptidomimetics are emerging as an important class of clinic therapeutics. Here we report a peptide-guided method for the functionalization and macrocyclization of bioactive peptidosulfonamides by Pd(II)-catalyzed late-stage C-H activation. In this protocol, peptides act as internal directing groups and enable site-selective olefination of benzylsulfonamides and cyclization of benzosulfonamides to yield benzosultam-peptidomimetics. Our results provide an unusual example of benzosulfonamide cyclization with olefins through a sequential C-H activation, which involves the generation of a reactive palladium-peptide complex. Furthermore, this protocol allows facile self-guided macrocyclization of sulfonamide-containing peptides by intramolecular olefination with acrylates and unactivated alkenes, affording bioactive peptidosulfonamide macrocycles of various sizes. Together, our results highlight the utility of peptides as internal directing groups in facilitating transition metal-catalyzed functionalization of peptidomimetics.
Collapse
|
48
|
Wang W, Lorion MM, Martinazzoli O, Ackermann L. BODIPY Peptide Labeling by Late‐Stage C(sp
3
)−H Activation. Angew Chem Int Ed Engl 2018; 57:10554-10558. [DOI: 10.1002/anie.201804654] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Oscar Martinazzoli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
- DZHK (German Centre for Cardiovascular Research) Germany
| |
Collapse
|
49
|
Wang W, Lorion MM, Martinazzoli O, Ackermann L. BODIPY Peptide Labeling by Late‐Stage C(sp
3
)−H Activation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804654] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Oscar Martinazzoli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
- DZHK (German Centre for Cardiovascular Research) Germany
| |
Collapse
|
50
|
Lu X, He SJ, Cheng WM, Shi J. Transition-metal-catalyzed C H functionalization for late-stage modification of peptides and proteins. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|