1
|
Roy S, Maiti B, Banerjee N, Kaulage MH, Muniyappa K, Chatterjee S, Bhattacharya S. New Xanthone Derivatives as Potent G-Quadruplex Binders for Developing Anti-Cancer Therapeutics. ACS Pharmacol Transl Sci 2023; 6:546-566. [PMID: 37082748 PMCID: PMC10111628 DOI: 10.1021/acsptsci.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 04/22/2023]
Abstract
Xanthone is an important scaffold for various medicinally relevant compounds. However, it has received scant attention in the design of agents that are cytotoxic to cancer cells via targeting the stabilization of G-quadruplex (G4) nucleic acids. Specific G4 DNA recognition against double-stranded (ds) DNA is receiving epoch-making interest for the development of G4-mediated anticancer agents. Toward this goal, we have synthesized xanthone-based derivatives with various functionalized side-arm substituents that exhibited significant selectivity for G4 DNA as compared to dsDNA. The specific interaction has been demonstrated by performing various biophysical experiments. Based on the computational study as well as the competitive ligand binding assay, it is inferred that the potent compounds exhibit an end-stacking mode of binding with G4 DNA. Additionally, compound-induced conformational changes in the flanking nucleotides form the binding pocket for effective interaction. Selective action of the compounds on cancer cells suggests their effectiveness as potent anti-cancer agents. This study promotes the importance of structure-based screening approaches to get molecular insights for new scaffolds toward desired specific recognition of non-canonical G4 DNA structures.
Collapse
Affiliation(s)
- Soma Roy
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
- School
of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Bappa Maiti
- School
of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nilanjan Banerjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Mangesh H. Kaulage
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kalappa Muniyappa
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subhrangsu Chatterjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
- School
of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
2
|
Roy S, Muniyappa K, Bhattacharya S. Deciphering the Binding Insights of Novel Disubstituted Anthraquinone Derivatives with G-Quadruplex DNA to Exhibit Selective Cancer Cell Cytotoxicity. ChemMedChem 2022; 17:e202200436. [PMID: 36161519 DOI: 10.1002/cmdc.202200436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/22/2022] [Indexed: 01/14/2023]
Abstract
Anthraquinone-based compounds are well-known as duplex DNA as well as G-quadruplex DNA binders. Implications of various anthraquinone derivatives for specific recognition of G-quadruplex DNA over duplex DNA is a 'challenging' research work that requires adequate experience with molecular design. To address this important issue, we designed and synthesized ten new 2,6-disubstituted anthraquinone-based derivatives with different functionalized piperazinyl side-chains. Among these, particular compounds with certain distant groups have shown selective and significant binding affinities toward the c-MYC and c-KIT G-quadruplex DNA over the duplex DNA, as noticed from various biophysical experiments. The structural difference of quadruplex and duplex DNA was utilized to probe these derivatives for the end-stacking mode of binding with G-quadruplex DNA. The ability of the ligands to halt DNA synthesis by stabilizing G-quadruplex structures is one of the crucial points to further apply them for quadruplex-mediated anti-cancer therapeutics. Interestingly, these ligands trigger apoptosis to exhibit selective cytotoxicity toward cancer cells over normal cells. This was further evidenced by ligand-induced cell cycle arrest as well as cellular apoptotic morphological changes. These blood-compatible ligands provided detailed structure-activity relationship approaches for the molecular design of anthraquinone-based G-quadruplex binders.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India.,School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India.,School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| |
Collapse
|
3
|
Biver T. Discriminating between Parallel, Anti-Parallel and Hybrid G-Quadruplexes: Mechanistic Details on Their Binding to Small Molecules. Molecules 2022; 27:molecules27134165. [PMID: 35807410 PMCID: PMC9268745 DOI: 10.3390/molecules27134165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
G-quadruplexes (G4) are now extensively recognised as a peculiar non-canonical DNA geometry that plays a prime importance role in processes of biological relevance whose number is increasing continuously. The same is true for the less-studied RNA G4 counterpart. G4s are stable structures; however, their geometrical parameters may be finely tuned not only by the presence of particular sequences of nucleotides but also by the salt content of the medium or by a small molecule that may act as a peculiar topology inducer. As far as the interest in G4s increases and our knowledge of these species deepens, researchers do not only verify the G4s binding by small molecules and the subsequent G4 stabilisation. The most innovative studies now aim to elucidate the mechanistic details of the interaction and the ability of a target species (drug) to bind only to a peculiar G4 geometry. In this focused review, we survey the advances in the studies of the binding of small molecules of medical interest to G4s, with particular attention to the ability of these species to bind differently (intercalation, lateral binding or sitting atop) to different G4 topologies (parallel, anti-parallel or hybrid structures). Some species, given the very high affinity with some peculiar G4 topology, can first bind to a less favourable geometry and then induce its conversion. This aspect is also considered.
Collapse
Affiliation(s)
- Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
4
|
Platella C, Mazzini S, Napolitano E, Mattio LM, Beretta GL, Zaffaroni N, Pinto A, Montesarchio D, Dallavalle S. Plant-Derived Stilbenoids as DNA-Binding Agents: From Monomers to Dimers. Chemistry 2021; 27:8832-8845. [PMID: 33890349 PMCID: PMC8251996 DOI: 10.1002/chem.202101229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/18/2023]
Abstract
Stilbenoids are natural compounds endowed with several biological activities, including cardioprotection and cancer prevention. Among them, (±)-trans-δ-viniferin, deriving from trans-resveratrol dimerization, was investigated in its ability to target DNA duplex and G-quadruplex structures by exploiting NMR spectroscopy, circular dichroism, fluorescence spectroscopy and molecular docking. (±)-trans-δ-Viniferin proved to bind both the minor and major grooves of duplexes, whereas it bound the 3'- and 5'-ends of a G-quadruplex by stacking on the outer quartets, accompanied by rearrangement of flanking residues. Specifically, (±)-trans-δ-viniferin demonstrated higher affinity for the investigated DNA targets than its monomeric counterpart. Additionally, the methoxylated derivatives of (±)-trans-δ-viniferin and trans-resveratrol, i. e. (±)-pterostilbene-trans-dihydrodimer and trans-pterostilbene, respectively, were evaluated, revealing similar binding modes, affinities and stoichiometries with the DNA targets as their parent analogues. All tested compounds were cytotoxic at μM concentration on several cancer cell lines, showing DNA damaging activity consistent with their ability to tightly interact with duplex and G-quadruplex structures.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| | - Ettore Napolitano
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Luce M. Mattio
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| | - Giovanni Luca Beretta
- Molecular Pharmacology UnitDepartment of Applied Research and Technological Development Fondazione IRCCS Istituto Nazionale Tumorivia Amadeo 4220133MilanItaly
| | - Nadia Zaffaroni
- Molecular Pharmacology UnitDepartment of Applied Research and Technological Development Fondazione IRCCS Istituto Nazionale Tumorivia Amadeo 4220133MilanItaly
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| | - Daniela Montesarchio
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| |
Collapse
|
5
|
Nimbarte VD, Wirmer‐Bartoschek J, Gande SL, Alshamleh I, Seibert M, Nasiri HR, Schnütgen F, Serve H, Schwalbe H. Synthesis and in Vitro Evaluation of Novel 5-Nitroindole Derivatives as c-Myc G-Quadruplex Binders with Anticancer Activity. ChemMedChem 2021; 16:1667-1679. [PMID: 33508167 PMCID: PMC8252724 DOI: 10.1002/cmdc.202000835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Lead-optimization strategies for compounds targeting c-Myc G-quadruplex (G4) DNA are being pursued to develop anticancer drugs. Here, we investigate the structure-activity- relationship (SAR) of a newly synthesized series of molecules based on the pyrrolidine-substituted 5-nitro indole scaffold to target G4 DNA. Our synthesized series allows modulation of flexible elements with a structurally preserved scaffold. Biological and biophysical analyses illustrate that substituted 5-nitroindole scaffolds bind to the c-Myc promoter G-quadruplex. These compounds downregulate c-Myc expression and induce cell-cycle arrest in the sub-G1/G1 phase in cancer cells. They further increase the concentration of intracellular reactive oxygen species. NMR spectra show that three of the newly synthesized compounds interact with the terminal G-quartets (5'- and 3'-ends) in a 2 : 1 stoichiometry.
Collapse
Affiliation(s)
- Vijaykumar D. Nimbarte
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Julia Wirmer‐Bartoschek
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Santosh L. Gande
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
| | - Islam Alshamleh
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Marcel Seibert
- Department of Medicine 2Hematology/OncologyUniversity Hospital FrankfurtGoethe UniversityTheodor-Stern-Kai 760596Frankfurt am MainGermany
| | - Hamid Reza Nasiri
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Frank Schnütgen
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
- Department of Medicine 2Hematology/OncologyUniversity Hospital FrankfurtGoethe UniversityTheodor-Stern-Kai 760596Frankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)Theodor-Stern-Kai 760596Frankfurt am MainGermany
| | - Hubert Serve
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
- Department of Medicine 2Hematology/OncologyUniversity Hospital FrankfurtGoethe UniversityTheodor-Stern-Kai 760596Frankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)Theodor-Stern-Kai 760596Frankfurt am MainGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
- Frankfurt Cancer Institute (FCI)Theodor-Stern-Kai 760596Frankfurt am MainGermany
| |
Collapse
|
6
|
Gargallo R, Aviñó A, Eritja R, Jarosova P, Mazzini S, Scaglioni L, Taborsky P. Study of alkaloid berberine and its interaction with the human telomeric i-motif DNA structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119185. [PMID: 33234477 DOI: 10.1016/j.saa.2020.119185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The alkaloid berberine presents many biological activities related to its potential to bind DNA structures, such as duplex or G-quadruplex. Recently, it has been proposed that berberine may interact with i-motif structures formed from the folding of cytosine-rich sequences. In the present work, the interaction of this alkaloid with the i-motif formed by the human telomere cytosine-rich sequence, as well as with several positive and negative controls, has been studied. Molecular fluorescence and circular dichroism spectroscopies, as well as nuclear magnetic resonance spectrometry and competitive dialysis, have been used with this purpose. The results shown here reveal that the interaction of berberine with this i-motif is weak, mostly electrostatics in nature and takes place with bases not involved in C·C+ base pairs. Moreover, this ligand is not selective for i-motif structures, as binds equally to both, folded structure, and unfolded strand, without producing any stabilization of the i-motif. As a conclusion, the development of analytical methods based on the interaction of fluorescent ligands, such as berberine, with i-motif structures should consider the thermodynamic aspects related with the interaction, as well as the selectivity of the proposed ligands with different DNA structures, including unfolded strands.
Collapse
Affiliation(s)
- R Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1, E-08028 Barcelona, Spain.
| | - A Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - R Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - P Jarosova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - S Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - L Scaglioni
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - P Taborsky
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
7
|
Platella C, Trajkovski M, Doria F, Freccero M, Plavec J, Montesarchio D. On the interaction of an anticancer trisubstituted naphthalene diimide with G-quadruplexes of different topologies: a structural insight. Nucleic Acids Res 2020; 48:12380-12393. [PMID: 33170272 PMCID: PMC7708068 DOI: 10.1093/nar/gkaa1001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Naphthalene diimides showed significant anticancer activity in animal models, with therapeutic potential related to their ability to strongly interact with G-quadruplexes. Recently, a trifunctionalized naphthalene diimide, named NDI-5, was identified as the best analogue of a mini-library of novel naphthalene diimides for its high G-quadruplex binding affinity along with marked, selective anticancer activity, emerging as promising candidate drug for in vivo studies. Here we used NMR, dynamic light scattering, circular dichroism and fluorescence analyses to investigate the interactions of NDI-5 with G-quadruplexes featuring either parallel or hybrid topology. Interplay of different binding modes of NDI-5 to G-quadruplexes was observed for both parallel and hybrid topologies, with end-stacking always operative as the predominant binding event. While NDI-5 primarily targets the 5'-end quartet of the hybrid G-quadruplex model (m-tel24), the binding to a parallel G-quadruplex model (M2) occurs seemingly simultaneously at the 5'- and 3'-end quartets. With parallel G-quadruplex M2, NDI-5 formed stable complexes with 1:3 DNA:ligand binding stoichiometry. Conversely, when interacting with hybrid G-quadruplex m-tel24, NDI-5 showed multiple binding poses on a single G-quadruplex unit and/or formed different complexes comprising two or more G-quadruplex units. NDI-5 produced stabilizing effects on both G-quadruplexes, forming complexes with dissociation constants in the nM range.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Filippo Doria
- Department of Chemistry, University of Pavia, Viale Taramelli 10, I-27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, Viale Taramelli 10, I-27100 Pavia, Italy
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| |
Collapse
|
8
|
Wu TY, Huang Q, Huang ZS, Hu MH, Tan JH. A drug-like imidazole-benzothiazole conjugate inhibits malignant melanoma by stabilizing the c-MYC G-quadruplex. Bioorg Chem 2020; 99:103866. [PMID: 32330737 DOI: 10.1016/j.bioorg.2020.103866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Aberrant expression of c-MYC oncogene is significantly associated with the occurrence and development of malignant melanoma. Suppression of the c-MYC transcriptional activity accordingly provides a new idea for treating melanoma. Notably, stabilizing the G-quadruplex (G4) structure in the promoter is proved to be effective in downregulating c-MYC transcription. In this work, we developed a drug-like imidazole-benzothiazole conjugate called IZTZ-1, which was confirmed to preferentially stabilize the promoter G4 and thus lower c-MYC expression. Intracellular assays revealed that IZTZ-1 induced cell cycle arrest, apoptosis, thereby inhibiting cell proliferation. Furthermore, IZTZ-1 was demonstrated to effectively inhibit tumor growth in a melanoma mouse model. Consequently, IZTZ-1 showed good potential in the treatment of melanoma. This study provides an alternative strategy to treat melanoma by targeting the c-MYC G4.
Collapse
Affiliation(s)
- Tian-Ying Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiong Huang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming-Hao Hu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Novel triazole and morpholine substituted bisnaphthalimide: Synthesis, photophysical and G-quadruplex binding properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Wu YC, Luo SH, Mei WJ, Cao L, Wu HQ, Wang ZY. Synthesis and biological evaluation of 4-biphenylamino-5-halo-2( 5H )-furanones as potential anticancer agents. Eur J Med Chem 2017; 139:84-94. [DOI: 10.1016/j.ejmech.2017.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/15/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
|