1
|
Saqlain M, Muhammad Zohaib H, Ahmad Khan M, Qamar S, Masood S, Lauqman M, Ilyas M, Irfan M, Li H. Evaluating the Drug Delivery Capacity of 3D Coordination Polymer for Anticancer Drugs. Chem Asian J 2025; 20:e202401475. [PMID: 39903798 DOI: 10.1002/asia.202401475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/16/2025] [Indexed: 02/06/2025]
Abstract
We synthesized {[Cd2(dTMP)2(4,4'-azpy)2(H2O)2] ⋅ 3(O)}n a novel three-dimensional metal nucleotide coordination polymer (CP-1). An assessment of the CP-1 binding affinity for anticancer drugs was conducted using molecular dynamic simulations. The virtual screening results depict that CP-1 has a lot of potential for encapsulating the anthracycline anticancer drug doxorubicin (DOX). It hasn't yet been investigated how to accomplish high loading capacity, efficiency, and controlled release of DOX in dTMP-based 3D metal coordination polymers. Utilizing DOX as a drug model and our system as a drug-loading vehicle, we used UV-visible and circular dichroism titrations to examine the effects of its encapsulation and release. The mechanism of drug loading and release was investigated through pH-responsive behavior by adjusting the pH value to 8, 7, 6, and 5. The results indicate the CP-1 has a robust affinity for DOX at pH 7, which facilitates its loading on 3D porous coordination polymer. However, the maximum cumulative drug release of 87.11 % was observed at pH 5. The higher correlation coefficient (R2) was obtained at pH 5 with the Higuchi equation. It indicated that the drug released was primarily controlled with the diffusion mechanism. The CP-1 polymer's ability to encapsulate DOX while also permitting a possible controlled-release mechanism is confirmed by the combined insights from the experimental findings, energy graphs, RMSD analysis, and radius of gyration (Rg) data from MD simulations.
Collapse
Affiliation(s)
- Madiha Saqlain
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hafiz Muhammad Zohaib
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Maroof Ahmad Khan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Hainan University, 570228, Haikou, P. R. China
| | - Samina Qamar
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sara Masood
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Lauqman
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mubashar Ilyas
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Muhammad Irfan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
2
|
Li Z, Song W, Zhu Y, Yan L, Zhong X, Zhang M, Li H. The Full Cytosine-Cytosine Base Paring: Self-Assembly and Crystal Structure. Chemistry 2023; 29:e202203979. [PMID: 36757279 DOI: 10.1002/chem.202203979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
The synthesis of self-assembly systems that can mimic partial biological behaviours require ingenious and delicate design. For decades, scientists are committed to exploring new base pairing patterns using hydrogen bonds directed self-assembly of nucleotides. A fundamental question is the adaptive circumstance of the recognition between base pairs, namely, how solvent conditions affect the domain of base pairs. Towards this question, three nucleotide complexes based on 2'-deoxycytidine-5'-monophosphate (dCMP) and cytidine-5'-monophosphate (CMP) were synthesized in different solvents and pH values, and an unusual cytosine-cytosine base paring pattern (named full C : C base pairing) has been successfully obtained. Systematic single crystal analysis and 1 H NMR titration spectra have been performed to explore factors influencing the formation of base paring patterns. Moreover, supramolecular chirality of three complexes were studied using circular dichroism (CD) spectroscopy in solution and solid-state combined with crystal structure analysis.
Collapse
Affiliation(s)
- Zhongkui Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenjing Song
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yanhong Zhu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Yan
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xue Zhong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Menglei Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
3
|
Zhu Y, Li Z, Zhong X, Wu X, Lu Y, Khan MA, Li H. Coordination Patterns of the Diphosphate in IDP Coordination Complexes: Crystal Structure and Chirality. Inorg Chem 2022; 61:19425-19439. [DOI: 10.1021/acs.inorgchem.2c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yanhong Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xue Zhong
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xuan Wu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yongqiu Lu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
4
|
Qiu QM, Song JB, Dong AG, Li CT, Zheng ZY. Crystal structure of 4,4'-(diazenediyl)dipyridinium nitrate perchlorate. Acta Crystallogr E Crystallogr Commun 2022; 78:897-899. [PMID: 36072523 PMCID: PMC9443795 DOI: 10.1107/s2056989022007885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022]
Abstract
The title compound, C10H10N4 2+·NO3 -·ClO4 -, was obtained unexpectedly by the reaction of Co(ClO4)2·6H2O and cytidine-5'-monophosphate with 4,4'-azo-pyridine in an aqueous solution of nitric acid. The mol-ecular structure comprises two planar 4,4'-diazenediyldipyridinium dications lying on inversion centres and perchlorate and nitrate anions in general positions. In the crystal, N-H⋯O hydrogen bonds between dications and anions lead to the formation of [232] chains.
Collapse
Affiliation(s)
- Qi-Ming Qiu
- School of Science, China University of Geosciences, Beijing 100083, People’s Republic of China
| | - Jian-Biao Song
- Beijing Chaoyang Foreign Language School, Beijing 100101, People’s Republic of China
| | - Ai-Guo Dong
- School of Science, China University of Geosciences, Beijing 100083, People’s Republic of China
| | - Chuan-Tao Li
- School of Science, China University of Geosciences, Beijing 100083, People’s Republic of China
| | - Zhi-Yuan Zheng
- School of Science, China University of Geosciences, Beijing 100083, People’s Republic of China
| |
Collapse
|
5
|
Mastropietro TF, De Munno G. Supramolecular self-assembly of cytidine monophosphate-di-copper building blocks. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2098018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Teresa F. Mastropietro
- Dipartimento di Chimica e Tecnologie Chimiche - CTC, Università della Calabria, Cosenza, Italy
| | - Giovanni De Munno
- Dipartimento di Chimica e Tecnologie Chimiche - CTC, Università della Calabria, Cosenza, Italy
| |
Collapse
|
6
|
Qiu QM, Song JB, Yan L, Dong AG, Li CT, Zheng ZY. The crystal structure of 1,2-bis(pyridinium-4-yl)ethane diperchlorate, C 12H 14N 2·2ClO 4 – a second polymorph. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C12H14N2·2ClO4, monoclinic, P21/c (no. 14), a = 5.3170(4) Å, b = 12.8711(8) Å, c = 11.6788(7) Å, β = 100.888(2)°, V = 784.86(9) Å3, Z = 2, R
gt
(F) = 0.0434, wR
ref
(F
2) = 0.1211, T = 298 K.
Collapse
Affiliation(s)
- Qi-Ming Qiu
- School of Science, China University of Geosciences , Beijing 100083 , P. R. China
| | - Jian-Biao Song
- Beijing Chaoyang Foreign Language School , Beijing 100101 , P. R. China
| | - Li Yan
- Analytical and Testing Centre, Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Ai-Guo Dong
- School of Science, China University of Geosciences , Beijing 100083 , P. R. China
| | - Chuan-Tao Li
- School of Science, China University of Geosciences , Beijing 100083 , P. R. China
| | - Zhi-Yuan Zheng
- School of Science, China University of Geosciences , Beijing 100083 , P. R. China
| |
Collapse
|
7
|
Zhu Y, Li Z, Song W, Khan MA, Li H. Conformation Locking of the Pentose Ring in Nucleotide Monophosphate Coordination Polymers via π-π Stacking and Metal-Ion Coordination. Inorg Chem 2022; 61:818-829. [PMID: 34856096 DOI: 10.1021/acs.inorgchem.1c02356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The conformation of the pentose ring in nucleotides is extremely important and a basic problem in biochemistry and pharmaceutical chemistry. In this study, we used a strategy to regulate the conformation of pentose rings of nucleotides via the synergistic effect of metal-ion coordination and π-π stacking. Seven types of coordination complexes were developed and characterized using Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, powder X-ray diffraction, ultraviolet-visible spectroscopy, 1H nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction. On the basis of two conformational parameters obtained from single-crystal structure analysis, i.e., the pseudorotation phase angle and degree of puckering, the exact conformation of the furanose ring in these coordination polymers was unequivocally determined. Crystallographic studies demonstrate that a short bridging ligand (4,4'-bipyridine) is conducive to the formation of a twist form, and long auxiliary ligands [1,2-bis(4-pyridyl)ethene and 4,4'-azopyridine] induce the formation of an envelope conformation. However, the longest auxiliary ligands [1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene] cannot limit the flexibility of a nucleotide. Our results demonstrated that the proposed strategy is universal and controllable. Moreover, the chirality of these coordination polymers was examined by combining the explanation of their crystal structures with solid-state circular dichroism spectroscopy measurements.
Collapse
Affiliation(s)
- Yanhong Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenjing Song
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
8
|
Bruno R, Mastropietro TF, De Munno G, Armentano D. A Nanoporous Supramolecular Metal-Organic Framework Based on a Nucleotide: Interplay of the π···π Interactions Directing Assembly and Geometric Matching of Aromatic Tails. Molecules 2021; 26:molecules26154594. [PMID: 34361760 PMCID: PMC8347718 DOI: 10.3390/molecules26154594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Self-assembly is the most powerful force for creating ordered supramolecular architectures from simple components under mild conditions. π···π stacking interactions have been widely explored in modern supramolecular chemistry as an attractive reversible noncovalent tool for the nondestructive fabrication of materials for different applications. Here, we report on the self-assembly of cytidine 5’-monophosphate (CMP) nucleotide and copper metal ions for the preparation of a rare nanoporous supramolecular metal-organic framework in water. π···π stacking interactions involving the aromatic groups of the ancillary 2,2’-bipyridine (bipy) ligands drive the self-assemblies of hexameric pseudo-amphiphilic [Cu6(bipy)6(CMP)2(µ-O)Br4]2+ units. Owing to the supramolecular geometric matching between the aromatic tails, a nanoporous crystalline phase with hydrophobic and hydrophilic chiral pores of 1.2 and 0.8 nanometers, respectively, was successfully synthesized. The encoded chiral information, contained on the enantiopure building blocks, is transferred to the final supramolecular structure, assembled in the very unusual topology 8T6. These kinds of materials, owing to chiral channels with chiral active sites from ribose moieties, where the enantioselective recognition can occur, are, in principle, good candidates to carry out efficient separation of enantiomers, better than traditional inorganic and organic porous materials.
Collapse
|
9
|
Song WJ, Su H, Zhou P, Zhu YH, Khan MA, Song JB, Li H. Controllable synthesis of two adenosine 5'-monophosphate nucleotide coordination polymers via pH regulation: crystal structure and chirality. Dalton Trans 2021; 50:4713-4719. [PMID: 33729226 DOI: 10.1039/d1dt00133g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two types of Cu(ii)-AMP-4,4'-bipy coordination polymers, {[Cu(AMP)(4,4'-bipy)(H2O)3]·5H2O}n (1) and {[Cu2(HAMP)2(4,4'-bipy)2(H2O)4]·2NO3·11H2O}n (2) (Na2AMP = adenosine 5'-monophosphate disodium salt), were synthesised through pH control. X-ray single-crystal diffraction analysis revealed that 1 and 2 are one-dimensional (1D) coordinating coordination polymers. The nucleotide in 1 was not protonated whereas that in 2 was protonated. With the protonated NO3- in 2 entering the crystal lattice, it plays a role in balancing the charge. The chirality was studied using solid-state circular dichroism (CD) spectroscopy based on the analysis of crystal structures.
Collapse
Affiliation(s)
- Wen-Jing Song
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Iqbal MJ, Li Z, Khan MA, Zhu Y, Hussain W, Su H, Qiu QM, Shoukat R, Li H. Studies on the structure and chirality of A-motif in adenosine monophosphate nucleotide metal coordination complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00276g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure and chirality of A-motif.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Yanhong Zhu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Wajid Hussain
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Hao Su
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Qi-Ming Qiu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Rizwan Shoukat
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| |
Collapse
|
11
|
Priyanka, Kumar A. Smart soft supramolecular hybrid hydrogels modulated by Zn 2+/Ag NPs with unique multifunctional properties and applications. Dalton Trans 2020; 49:15095-15108. [PMID: 33107505 DOI: 10.1039/d0dt01886d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of low molecular weight molecule-mediated biocompatible soft supramolecular hydrogels, considered to be next-generation materials for biomedical applications, is a challenging task. In this context, the present work reports the synthesis of the hybrid hydrogel (CISZ2H) comprising ternary nanohybrids (Zn2+-Ag NPs@β-FeOOH@5'-CMP), consisting of greener components as a building block with hydrophobic tail (containing Zn2+ ions, Ag NPs, and β-FeOOH) and hydrophilic head (5'-cytidine monophosphate (5'-CMP)). The presence of Zn2+ ions and Ag NPs in the nanohybrids introduces new coordination sites and induces the puckering of the ribose sugar in 5'-CMP to generate the solid-like network in the self-assembly via micellar formation involving building blocks. Extensive cross-linking among organic and inorganic moieties provide these hydrogels with unique physicochemical features of improved mechanical strength (∼71 000 Pa), large water retention capability (600%), self-healing, and injectability as arrived at by thixotropic measurements, low toxicity, and enhanced drug/dye loading capabilities. Thus, the co-doped Zn2+ ions and Ag NPs in CISZ2H impart it with enhanced mechanical stability, shear thinning, external stimuli-responsiveness (pH and temperature), sustained slow drug release, surface enhanced Raman scattering (SERS) activity, and antibacterial features, thereby making this hydrogel safer for drug delivery, wound healing, sensing, and tissue engineering. The excellent features of the as-synthesized hydrogels make it a smart soft material for advanced applications with enormous future potential.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247667, India.
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247667, India.
| |
Collapse
|
12
|
Kumar A. Multistimulus-Responsive Supramolecular Hydrogels Derived by in situ Coating of Ag Nanoparticles on 5'-CMP-Capped β-FeOOH Binary Nanohybrids with Multifunctional Features and Applications. ACS OMEGA 2020; 5:13672-13684. [PMID: 32566832 PMCID: PMC7301386 DOI: 10.1021/acsomega.0c00815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 05/06/2023]
Abstract
The present manuscript reports the synthesis of multistimulus-responsive smart supramolecular hydrogels derived by in situ coating of silver nanoparticles (Ag NPs) on colloidal cytidine-5'-monophosphate-capped β-FeOOH nanohybrids (β-FeOOH@5'-CMP) under physiological conditions forming a polycrystalline building block (Ag-coated β-FeOOH@5'-CMP). The presence of Ag in the binary nanohybrids induces the puckering of ribose sugar, bringing a change in its conformation from C2'-endo to C3'-endo, which enhanced the supramolecular interactions among different moieties of other building blocks to construct a porous network of hydrogels in the self-assembly via the formation of a micellar structure. Such a supramolecular network in hydrogel is also evidenced by the reversible sol⇌gel transformation under multistimulus-responsiveness in a narrow range of pH, temperature, and sonication, as well as by the manifestation of rapid self-healing and injectability features. As-synthesized hydrogels exhibiting shear-thinning behavior under higher strain and converting back into the sol under low strain, suggests their potential for localized drug delivery. The presence of Ag NPs in the hydrogel enhanced its viscoelastic properties, % swelling (580) and loading capabilities (590 mg g-1) for methylene blue (MB), and its controlled release over days (∼2-30) as a function of pH. It displayed excellent surface-enhanced Raman spectroscopy activity allowing to detect MB-like drug molecules at ≤10-12 M. Thus, the as-synthesized hydrogels represent a unique superparamagnetic nanosystem consisting of all greener components (5'-CMP/β-FeOOH/Ag) with superior viscoelastic, sensing, and antimicrobial properties, displaying multistimulus-responsiveness (pH/temperature/sonication), thereby suggesting their vast potential for biomedical and environmental applications.
Collapse
Affiliation(s)
- Anil Kumar
- , . Phone: +91 1332 285799. Fax: +91 1332 273560
| |
Collapse
|
13
|
|
14
|
Kumar A, Priyanka P. Environmentally benign pH-responsive cytidine-5′-monophosphate molecule-mediated akaganeite (5′-CMP-β-FeOOH) soft supramolecular hydrogels induced by the puckering of ribose sugar with efficient loading/release capabilities. NEW J CHEM 2019. [DOI: 10.1039/c9nj02949d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel synthetic protocol for environmentally benign 5′-CMP-β-FeOOH soft hydrogels exhibiting a rapid pH-responsive reversible sol–gel transition, efficient adsorption and slow release capabilities is reported.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Priyanka Priyanka
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
15
|
Qiu QM, Gu L, Ma H, Yan L, Liu M, Li H. Double layer zinc–UDP coordination polymers: structure and properties. Dalton Trans 2018; 47:14174-14178. [DOI: 10.1039/c8dt01537f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Double layer Zn–UDP coordination polymers with potentially open sites can be used for heterogeneous fluorescent sensors of amino acids.
Collapse
Affiliation(s)
- Qi-ming Qiu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Leilei Gu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Hongwei Ma
- Analytical and Testing Centre
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Li Yan
- Analytical and Testing Centre
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| |
Collapse
|