1
|
Shiue YS, Dyer MW, Burlow NP, Soisaeng N, Lamb KN, Soldi C, Fettinger JC, Tantillo DJ, Shaw JT. Assembly of the Tricyclic Core of Alopecurone C by Asymmetric Donor/Donor Carbene C-H Insertion. Org Lett 2024; 26:11129-11133. [PMID: 39665650 DOI: 10.1021/acs.orglett.4c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Two routes to assemble the complete tricyclic core of alopecurone C are described. In the first-generation route, an efficient synthesis of the "eastern" half of the target, including a decagram-scale rhodium-catalyzed C-H insertion reaction, was developed. When this route proved intractable for assembling the final flavanone ring, a successful second-generation route was developed from a flavanone precursor (naringenin) employing a later stage C-H insertion. Although the second route was ultimately unsuccessful for preparation of the final target, it does provide the basis for the efficient assembly of the complete tricyclic core of alopecurone C and related flavonostilbenoid natural products.
Collapse
Affiliation(s)
- Yuan-Shin Shiue
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Matthew W Dyer
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Noah P Burlow
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Nutthakarn Soisaeng
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Kellan N Lamb
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Cristian Soldi
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - James C Fettinger
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jared T Shaw
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
2
|
Domain A, Bao X, Rodriguez J, Bonne D. Enantioselective Synthesis of Benzodihydrofurans Bearing Axial and Central Stereogenic Elements. Chemistry 2024; 30:e202403374. [PMID: 39329420 DOI: 10.1002/chem.202403374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/28/2024]
Abstract
The enantioselective synthesis of chiral compounds containing multiple stereogenic elements via a single catalytic step is a challenging process. In the presence of α-chloronitrostyrenes and a chiral squaramide catalyst, C-C or C-N pro-axially chiral 2-naphthol substrates, featuring low barriers to enantiomerization, underwent a remote diastereo- and enantioselective domino Michael/O-alkylation. It provided the desired benzodihydrofurans bearing two stereogenic carbon atoms and a configurationally stable C-C or a C-N bond, thanks to a high increase of the barrier to rotation upon dihydrofurannulation.
Collapse
Affiliation(s)
- Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| |
Collapse
|
3
|
Xu W, Yamakawa T, Huang M, Tian P, Jiang Z, Xu MH. Conformational Locking Induced Enantioselective Diarylcarbene Insertion into B-H and O-H Bonds Using a Cationic Rh(I)/Diene Catalyst. Angew Chem Int Ed Engl 2024; 63:e202412193. [PMID: 39022851 DOI: 10.1002/anie.202412193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Transition-metal-catalyzed enantioselective transformations of aryl/aryl carbene are inherently challenging due to the difficulty in distinguishing between two arene rings in the reaction process thus remain largely less explored. The few successful examples reported so far, without exception, have all been catalyzed by Rh(II)-complexes. Herein, we describe our successful development of a novel cationic Rh(I)/chiral diene catalytic system capable of efficient enantioselective B-H and O-H insertions with diaryl diazomethanes, allowing the access to a broad range of gem-diarylmethine boranes and gem-diarylmethine ethers in good yields with high enantioselectivities. Notably, previously unattainable asymmetric diarylcarbene insertion into the O-H bond was achieved for the first time. A remarkable feature of this newly designed Rh(I)/diene catalyst bearing two ortho-amidophenyl substitutents is that it can distinguish between two arene rings of the diaryl carbene through a stereochemically selective control of π-π stacking interactions. DFT calculations indicate that the rotation-restricted conformation of Rh(I)/diene complex played an important role in the highly enantioselective carbene transformations. This work provides an interesting and unprecedented stereocontrol mode in diaryl metal carbene transformations.
Collapse
Affiliation(s)
- Weici Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Takeshi Yamakawa
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meiling Huang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peilin Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhigen Jiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
4
|
Tantillo DJ. Quantum Chemical Interrogation of Reactions Promoted by Dirhodium Tetracarboxylate Catalysts─Mechanism, Selectivity, and Nonstatistical Dynamic Effects. Acc Chem Res 2024; 57:1931-1940. [PMID: 38920276 DOI: 10.1021/acs.accounts.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
ConspectusRh2L4 catalysts have risen in popularity in the world of organic synthesis, being used to accomplish a variety of reactions, including C-H insertion and cyclopropanation, and often doing so with high levels of stereocontrol. While the mechanisms and origins of selectivity for such reactions have been examined with computational quantum chemistry for decades, only recently have detailed pictures of the dynamic behavior of reacting Rh2L4-complexed molecules become accessible. Our computational studies on Rh2L4 catalyzed reactions are described here, with a focus on C-H insertion reactions of Rh2L4-carbenes. Several issues complicate the modeling of these reactions, each providing an opportunity for greater understanding and each revealing issues that should be incorporated into future rational design efforts. First, the fundamental mechanism of C-H insertion is discussed. While early quantum chemical studies pointed to transition structures with 3-center [C-H-C] substructures and asynchronous hydride transfer/C-C bond formation, recent examples of reactions with particularly flat potential energy surfaces and even discrete zwitterionic intermediates have been found. These reactions are associated with systems bearing π-donating groups at the site of hydride transfer, allowing for an intermediate with a carbocation substructure at that site to be selectively stabilized. Second, the possible importance of solvent coordination at the Rh atom distal to the carbene is discussed. While effects on reactivity and selectivity were found to be small, they turn out not to be negligible in some cases. Third, it is shown that, in contrast to many other transition metal promoted reactions, many Rh2L4 catalyzed reactions likely involve dissociation of the Rh2L4 catalyst before key chemical steps leading to products. When to expect dissociation is associated with specific features of substrates and the product-forming reactions in question. Often, dissociation precedes transition structures for pericyclic reactions that involve electrons that would otherwise bind to Rh2L4. Finally, the importance of nonstatistical dynamic effects, characterized through ab initio molecular dynamics studies, in some Rh2L4 catalyzed reactions is discussed. These are reactions where transition structures are shown to be followed by flat regions, very shallow minima, and/or pathways that bifurcate, all allowing for trajectories from a single transition state to form multiple different products. The likelihood of encountering such a situation is shown to be associated again with the likelihood of formation of zwitterionic structures along reaction paths, but ones for which pathways to multiple products are expected to be associated with very low or no barriers. The connection between these features and reduced yields of desired products are highlighted, as are the means by which some Rh2L4 catalysts modulate dynamic behavior to produce particular products in high yield.
Collapse
Affiliation(s)
- Dean J Tantillo
- Department of Chemistry, University of California─Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
5
|
Souza L, Miller BR, Cammarota RC, Lo A, Lopez I, Shiue YS, Bergstrom BD, Dishman SN, Fettinger JC, Sigman MS, Shaw JT. Deconvoluting Nonlinear Catalyst-Substrate Effects in the Intramolecular Dirhodium-Catalyzed C-H Insertion of Donor/Donor Carbenes Using Data Science Tools. ACS Catal 2024; 14:104-115. [PMID: 38205021 PMCID: PMC10775150 DOI: 10.1021/acscatal.3c04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 01/12/2024]
Abstract
Interactions between catalysts and substrates can be highly complex and dynamic, often complicating the development of models to either predict or understand such processes. A dirhodium(II)-catalyzed C-H insertion of donor/donor carbenes into 2-alkoxybenzophenone substrates to form benzodihydrofurans was selected as a model system to explore nonlinear methods to achieve a mechanistic understanding. We found that the application of traditional methods of multivariate linear regression (MLR) correlating DFT-derived descriptors of catalysts and substrates leads to poorly performing models. This inspired the introduction of nonlinear descriptor relationships into modeling by applying the sure independence screening and sparsifying operator (SISSO) algorithm. Based on SISSO-generated descriptors, a high-performing MLR model was identified that predicts external validation points well. Mechanistic interpretation was aided by the deconstruction of feature relationships using chemical space maps, decision trees, and linear descriptors. Substrates were found to have a strong dependence on steric effects for determining their innate cyclization selectivity preferences. Catalyst reactive site features can then be matched to product features to tune or override the resultant diastereoselectivity within the substrate-dictated ranges. This case study presents a method for understanding complex interactions often encountered in catalysis by using nonlinear modeling methods and linear deconvolution by pattern recognition.
Collapse
Affiliation(s)
- Lucas
W. Souza
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Beck R. Miller
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan C. Cammarota
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Anna Lo
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ixchel Lopez
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Yuan-Shin Shiue
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Benjamin D. Bergstrom
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Sarah N. Dishman
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - James C. Fettinger
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jared T. Shaw
- Department
of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
6
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
7
|
Chen Y, Fan Y, Li Y, Yao C. Iodonium Ion-Induced Cyclization and Aryl Migration of ortho-Hydroxystilbenes for the Synthesis of 3-Aryl-2,3-dihydrobenzofuran. J Org Chem 2023; 88:11460-11472. [PMID: 37526470 DOI: 10.1021/acs.joc.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A facile and versatile protocol for the efficient synthesis of 3-aryl-2,3-dihydrobenzofuran (ADB) has been reported first. This reaction features the cyclization and aryl migration reaction of ortho-hydroxystilbene in ethanol, which is mediated by an iodonium ion, under ambient conditions. A class of ADB was prepared efficiently in good to excellent yields. Mechanism investigation revealed that acids and alcohols facilitated aryl migration, but alkaline and non-alcohol solvents promoted β elimination. The practicality of this strategy was further substantiated by two scale-up reactions and demonstrated in efficient synthetic elaboration.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yiyao Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yanqiu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Chunsuo Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
8
|
Díaz-Jiménez À, Monreal-Corona R, Poater A, Álvarez M, Borrego E, Pérez PJ, Caballero A, Roglans A, Pla-Quintana A. Intramolecular Interception of the Remote Position of Vinylcarbene Silver Complex Intermediates by C(sp 3 )-H Bond Insertion. Angew Chem Int Ed Engl 2023; 62:e202215163. [PMID: 36345831 PMCID: PMC10108323 DOI: 10.1002/anie.202215163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
The trapping of the elusive vinylogous position of a vinyl carbene with an aliphatic C(sp3 )-H bond has been achieved for the first time during a silver-catalyzed carbene/alkyne metathesis (CAM) process. A Tpx -containing silver complex first promotes the generation of a donor-acceptor silver carbene which triggers CAM, generating a subsequent donor-donor vinyl silver carbene species, which then undergoes a selective vinylogous C(sp3 )-H bond insertion, leading to the synthesis of a new family of benzoazepines. Density functional theory (DFT) calculations unveil the reaction mechanism, which allows proposing that the C-H bond insertion reaction takes place in a stepwise manner, with the hydrogen shift being the rate determining step.
Collapse
Affiliation(s)
- Àlex Díaz-Jiménez
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Facultat de Ciències, C/ Maria Aurèlia Capmany, 69, 17003 Catalunya, Girona, Spain
| | - Roger Monreal-Corona
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Facultat de Ciències, C/ Maria Aurèlia Capmany, 69, 17003 Catalunya, Girona, Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Facultat de Ciències, C/ Maria Aurèlia Capmany, 69, 17003 Catalunya, Girona, Spain
| | - María Álvarez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Edificio Robert H. Grubbs, Campus de El Carmen, 21007, Huelva, Spain
| | - Elena Borrego
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Edificio Robert H. Grubbs, Campus de El Carmen, 21007, Huelva, Spain
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Edificio Robert H. Grubbs, Campus de El Carmen, 21007, Huelva, Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Edificio Robert H. Grubbs, Campus de El Carmen, 21007, Huelva, Spain
| | - Anna Roglans
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Facultat de Ciències, C/ Maria Aurèlia Capmany, 69, 17003 Catalunya, Girona, Spain
| | - Anna Pla-Quintana
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Facultat de Ciències, C/ Maria Aurèlia Capmany, 69, 17003 Catalunya, Girona, Spain
| |
Collapse
|
9
|
Wei B, Sharland JC, Blackmond DG, Musaev DG, Davies HML. In-situ Kinetic Studies of Rh(II)-Catalyzed C-H Functionalization to Achieve High Catalyst Turnover Numbers. ACS Catal 2022; 12:13400-13410. [PMID: 37274060 PMCID: PMC10237631 DOI: 10.1021/acscatal.2c04115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detailed kinetic studies on the functionalization of unactivated hydrocarbon sp3 C-H bonds by dirhodium-catalyzed reaction of aryldiazoacetates revealed that the C-H functionalization step is rate-determining. The efficiency of this step was increased by using the hydrocarbon as solvent and using donor/acceptor carbenes with an electron-withdrawing substituent on the aryl donor group. The optimum catalyst for these reactions is the tetraphenylphthalimido derivative Rh2(R-TPPTTL)4 and a further beneficial refinement was obtained by using N,N'-dicyclohexylcarbodiimide as an additive. Under the optimum conditions with a catalyst loading of 0.001 mol %, effective enantioselective C-H functionalization (66-97% yield, 83-97% ee) was achieved of cycloalkanes with a range of aryldiazoacetates as long as the aryldiazoacetate was not to sterically demanding. The reaction with cyclohexane using a catalyst loading of 0.0005 mol % could be recharged twice with additional aryldiazoacetate, resulting in an overall dirhodium catalyst turnover number of 580,000.
Collapse
Affiliation(s)
- Bo Wei
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Donna G. Blackmond
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037, United States
| | - Djamaladdin G. Musaev
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Cherry L. Emerson Center for Scientific Computation, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Li W, Zhang H, Chen K, Jiang H, Sun J, Zhu S. Palladium-catalyzed intramolecular enantioselective C(sp 3)-H insertion of donor/donor carbenes. Chem Sci 2022; 13:12396-12402. [PMID: 36382271 PMCID: PMC9629006 DOI: 10.1039/d2sc03524c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/29/2022] [Indexed: 09/07/2024] Open
Abstract
Herein, the first palladium-catalyzed intramolecular enantioselective C(sp3)-H insertion reaction of donor-donor carbenes has been successfully achieved. This facile protocol enables the rapid construction of a collection of enantioenriched decorated indolines with two contiguous stereocenters in a single step. Both enynones and diazo compounds are efficient donor-donor carbene precursors for this reaction. By an adjustment of ligands and protecting groups of the substrates, the palladium-carbene intermediates from diazo compounds afford sparse trans-indolines with excellent enantioselectivities, while carbenes from enynones deliver cis-indolines exclusively. Based on the control reactions and Hammett analysis, a stepwise Mannich-type pathway through a short-lived and compact zwitterionic intermediate is proposed.
Collapse
Affiliation(s)
- Wendeng Li
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - He Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR P. R. China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
11
|
Dishman SN, Laconsay CJ, Fettinger JC, Tantillo DJ, Shaw JT. Divergent stereochemical outcomes in the insertion of donor/donor carbenes into the C-H bonds of stereogenic centers. Chem Sci 2022; 13:1030-1036. [PMID: 35211269 PMCID: PMC8790770 DOI: 10.1039/d1sc04622e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Intramolecular C-H insertions with donor/donor dirhodium carbenes provide a concise and highly stereoselective method to set two contiguous stereocenters in a single step. Herein, we report the insertion of donor/donor carbenes into stereogenic carbon centers allowing access to trisubstituted benzodihydrofurans in a single step. This study illuminates, for the first time, the stereochemical impact on the carbene center and delineates the structural factors that enable control over both stereogenic centers. Sterically bulky, highly activated C-H insertion centers exhibit high substrate control yielding a single diastereomer and a single enantiomer of product regardless of the catalyst used. Less bulky, less activated C-H insertion centers exhibit catalyst control over the diastereomeric ratio (dr), where a single enantiomer of each diastereomer is observed with high selectivity. A combination of experimental studies and DFT calculations was used to elucidate the origin of these results. First, hydride transfer from the stereogenic insertion site proceeds with high stereoselectivity to the carbene center, thus determining the absolute configuration of the product. Second, the short lived zwitterionic intermediate can diaster-eoselectively ring-close by a hitherto unreported SE2 mechanism that is either controlled by the substrate or the catalyst. These results demonstrate that donor/donor carbenes undergo uniquely stereoselective reactions that originate from a stepwise reaction mechanism, in contrast to the analogous concerted reactions of carbenes with one or more electron-withdrawing groups attached.
Collapse
Affiliation(s)
- Sarah N Dishman
- Department of Chemistry, University of California One Shields Avenue Davis California 95616 USA
| | - Croix J Laconsay
- Department of Chemistry, University of California One Shields Avenue Davis California 95616 USA
| | - James C Fettinger
- Department of Chemistry, University of California One Shields Avenue Davis California 95616 USA
| | - Dean J Tantillo
- Department of Chemistry, University of California One Shields Avenue Davis California 95616 USA
| | - Jared T Shaw
- Department of Chemistry, University of California One Shields Avenue Davis California 95616 USA
| |
Collapse
|
12
|
Laconsay CJ, Pla-Quintana A, Tantillo DJ. Effects of Axial Solvent Coordination to Dirhodium Complexes on the Reactivity and Selectivity in C–H Insertion Reactions: A Computational Study. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Croix J. Laconsay
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Anna Pla-Quintana
- Department of Chemistry, University of California, Davis, California 95616, United States
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/Maria Aurèlia Capmany, 69, Girona 17003, Catalunya, Spain
| | - Dean J. Tantillo
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
13
|
Yao XQ, Tong WY, Wang K, Qu S, Wang J. Azacycle-Directed Formal Aromatic C(sp 2)–H Insertion with Cr(0) Fischer Carbene Complex via Oxidative Hydrogen Migration. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xing-Qi Yao
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Yan Tong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Kang Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Tantillo DJ, Laconsay CJ. Melding of Experiment and Theory Illuminates Mechanisms of Metal-Catalyzed Rearrangements: Computational Approaches and Caveats. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1720451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThis review summarizes approaches and caveats in computational modeling of transition-metal-catalyzed sigmatropic rearrangements involving carbene transfer. We highlight contemporary examples of combined synthetic and theoretical investigations that showcase the synergy achievable by integrating experiment and theory.1 Introduction2 Mechanistic Models3 Theoretical Approaches and Caveats3.1 Recommended Computational Tools3.2 Choice of Functional and Basis Set3.3 Conformations and Ligand-Binding Modes3.4 Solvation4 Synergy of Experiment and Theory – Case Studies4.1 Metal-Bound or Free Ylides?4.2 Conformations and Ligand-Binding Modes of Paddlewheel Complexes4.3 No Metal, Just Light4.4 How To ‘Cope’ with Nonstatistical Dynamic Effects5 Outlook
Collapse
|
15
|
Lu Z, Zhang Q, Ke M, Hu S, Xiao X, Chen F. TfOH-Catalyzed [4 + 1] Annulation of p-Quinone Methides with α-Aryl Diazoacetates: Straightforward Access to Highly Functionalized 2,3-Dihydrobenzofurans. J Org Chem 2021; 86:7625-7635. [PMID: 33993694 DOI: 10.1021/acs.joc.1c00672] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a methodology for the greatly efficient construction of significant 2,3-dihydrobenzofuran scaffolds bearing a quaternary carbon center at the C2 position by means of [4 + 1] annulation reactions between p-quinone methides and α-aryl diazoacetates as C1 synthons through organocatalysis by readily accessible TfOH catalyst under mild and transition metal-free conditions. This metal-free protocol furnishes an operationally simple and swift process for the free assembly of diverse highly functionalized 2,3-dihydrobenzofurans and also features broad substrate scope, excellent functional group compatibility, and environmental friendliness. Mechanistic investigation suggested that the reaction undergoes a rapid cascade protonation/intermolecular Michael addition/intramolecular substitution process.
Collapse
Affiliation(s)
- Zuolin Lu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qingchun Zhang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
16
|
Singha S, Buchsteiner M, Bistoni G, Goddard R, Fürstner A. A New Ligand Design Based on London Dispersion Empowers Chiral Bismuth-Rhodium Paddlewheel Catalysts. J Am Chem Soc 2021; 143:5666-5673. [PMID: 33829767 PMCID: PMC8154533 DOI: 10.1021/jacs.1c01972] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 01/02/2023]
Abstract
Heterobimetallic bismuth-rhodium paddlewheel complexes with phenylglycine ligands carrying TIPS-groups at the meta-positions of the aromatic ring exhibit outstanding levels of selectivity in reactions of donor/acceptor and donor/donor carbenes; at the same time, the reaction rates are much faster and the substrate scope is considerably wider than those of previous generations of chiral [BiRh] catalysts. As shown by a combined experimental, crystallographic, and computational study, the new catalysts draw their excellent application profile largely from the stabilization of the chiral ligand sphere by London dispersion (LD) interactions of the peripheral silyl substituents.
Collapse
Affiliation(s)
| | | | - Giovanni Bistoni
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Richard Goddard
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
17
|
Bergstrom BD, Nickerson LA, Shaw JT, Souza LW. Transition Metal Catalyzed Insertion Reactions with Donor/Donor Carbenes. Angew Chem Int Ed Engl 2021; 60:6864-6878. [PMID: 32770624 PMCID: PMC7867669 DOI: 10.1002/anie.202007001] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Donor/donor carbenes are relatively new in the field of carbene chemistry; although applications in C-H and X-H insertion reactions are few in number, they demonstrate exquisite chemo- and stereo-selectivity. Recent reports have shown that C-H, N-H, B-H, O-H, S-H, Si-H, Ge-H, Sn-H and P-H insertion reactions are feasible with a variety of transition metal catalysts, both inter- and intramolecularly. Furthermore, high degrees of diastereo- and enantioselectivity have been observed in several cases. Methods typically involve the formation of a diazo-based carbene precursor, but procedures using diazo-free metal carbenes have been developed with significant success. This Minireview covers transition-metal catalyzed insertion reactions with donor/donor and donor carbenes, providing context for future developments in this emerging field.
Collapse
Affiliation(s)
- Benjamin D Bergstrom
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Leslie A Nickerson
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Jared T Shaw
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Lucas W Souza
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| |
Collapse
|
18
|
Reiersølmoen AC, Battaglia S, Orthaber A, Lindh R, Erdélyi M, Fiksdahl A. P, N-Chelated Gold(III) Complexes: Structure and Reactivity. Inorg Chem 2021; 60:2847-2855. [PMID: 33169989 PMCID: PMC7927145 DOI: 10.1021/acs.inorgchem.0c02720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gold(III) complexes are versatile catalysts offering a growing number of new synthetic transformations. Our current understanding of the mechanism of homogeneous gold(III) catalysis is, however, limited, with that of phosphorus-containing complexes being hitherto underexplored. The ease of phosphorus oxidation by gold(III) has so far hindered the use of phosphorus ligands in the context of gold(III) catalysis. We present a method for the generation of P,N-chelated gold(III) complexes that circumvents ligand oxidation and offers full counterion control, avoiding the unwanted formation of AuCl4-. On the basis of NMR spectroscopic, X-ray crystallographic, and density functional theory analyses, we assess the mechanism of formation of the active catalyst and of gold(III)-mediated styrene cyclopropanation with propargyl ester and intramolecular alkoxycyclization of 1,6-enyne. P,N-chelated gold(III) complexes are demonstrated to be straightforward to generate and be catalytically active in synthetically useful transformations of complex molecules.
Collapse
Affiliation(s)
- Ann Christin Reiersølmoen
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Stefano Battaglia
- Department of Chemistry-BMC Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Andreas Orthaber
- Ångström Laboratory, Department of Organic Chemistry, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry-BMC Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Máté Erdélyi
- Department of Chemistry-BMC Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Anne Fiksdahl
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
19
|
Jing ZR, Liang DD, Tian JM, Zhang FM, Tu YQ. Enantioselective Construction of 2-Aryl-2,3-dihydrobenzofuran Scaffolds Using Cu/SPDO-Catalyzed [3 + 2] Cycloaddition. Org Lett 2021; 23:1258-1262. [PMID: 33528266 DOI: 10.1021/acs.orglett.0c04241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new, efficient approach toward the preparation of 2-aryl-2,3-dihydrobenzofuran scaffolds through the Cu/SPDO-catalyzed [3 + 2] cycloaddition between quinone ester and styrene derivatives has been developed. The procedure features excellent enantioselectivities (up to 99% ee), high yields (up to 96%), and broad substrate tolerance. Additionally, asymmetric synthesis of natural corsifurans A and B from commercially available starting materials has also been achieved in two or three steps using this reaction as a key transformation.
Collapse
Affiliation(s)
- Ze-Ran Jing
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dong-Dong Liang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jin-Miao Tian
- School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
20
|
Affiliation(s)
- Radim Hrdina
- Institute of Organic Chemistry Justus-Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
21
|
Laconsay CJ, Tantillo DJ. Metal Bound or Free Ylides as Reaction Intermediates in Metal-Catalyzed [2,3]-Sigmatropic Rearrangements? It Depends. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Croix J. Laconsay
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| |
Collapse
|
22
|
Anada M, Hashimoto S, Ito M, Kondo Y, Namie R, Natori Y, Takeda K, Nambu H, Yamamoto Y. Diastereo- and Enantioselective Intramolecular 1,6-C–H Insertion Reaction of Diaryldiazomethanes Catalyzed by Chiral Dirhodium(II) Carboxylates. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Bergstrom BD, Nickerson LA, Shaw JT, Souza LW. Transition Metal Catalyzed Insertion Reactions with Donor/Donor Carbenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Benjamin D. Bergstrom
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95616 USA
| | - Leslie A. Nickerson
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95616 USA
| | - Jared T. Shaw
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95616 USA
| | - Lucas W. Souza
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95616 USA
| |
Collapse
|
24
|
Wang YM, Durham AC, Wang Y. Redox-Neutral Propargylic C–H Functionalization by Using Iron Catalysis. Synlett 2020. [DOI: 10.1055/s-0040-1707271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractIn spite of their rich stoichiometric chemistry, cyclopentadienyliron(II) dicarbonyl complexes are rarely used as catalysts in organic synthesis. Inspired by precedents in the chemistry of cationic olefin complexes and neutral allylmetal species, our group has developed a coupling of alkynes or alkenes with aldehydes and other carbonyl electrophiles to give homopropargylic and homoallylic alcohols, respectively, by using a substituted cyclopentadienyliron(II) dicarbonyl complex as the catalyst. In this article, we first contextualize this development within the conceptual background of C–H functionalization chemistry and relative to key stoichiometric precedents. We then give an account of our group’s discovery and development of the catalytic α-functionalization of alkenes and alkynes with electrophilic reagents.IntroductionPreliminary Stoichiometric WorkHydroxyalkylation Development and ScopeConclusions and Future Directions
Collapse
|
25
|
Jagannathan JR, Fettinger JC, Shaw JT, Franz AK. Enantioselective Si-H Insertion Reactions of Diarylcarbenes for the Synthesis of Silicon-Stereogenic Silanes. J Am Chem Soc 2020; 142:11674-11679. [PMID: 32539370 PMCID: PMC7747653 DOI: 10.1021/jacs.0c04533] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the first example of enantioselective, intermolecular diarylcarbene insertion into Si-H bonds for the synthesis of silicon-stereogenic silanes. Dirhodium(II) carboxylates catalyze an Si-H insertion using carbenes derived from diazo compounds where selective formation of an enantioenriched silicon center is achieved using prochiral silanes. Fourteen prochiral silanes were evaluated with symmetrical and prochiral diazo reactants to produce a total of 25 novel silanes. Adding an ortho substituent on one phenyl ring of a prochiral diazo enhances enantioselectivity up to 95:5 er with yields up to 98%. Using in situ IR spectroscopy, the impact of the off-cycle azine formation is supported based on the structural dependence for relative rates of diazo decomposition. A catalytic cycle is proposed with Si-H insertion as the rate-determining step, supported by kinetic isotope experiments. Transformations of an enantioenriched silane derived from this method, including selective synthesis of a novel sila-indane, are demonstrated.
Collapse
Affiliation(s)
- Jake R. Jagannathan
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - James C. Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Jared T. Shaw
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Annaliese K. Franz
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
26
|
Lee M, Ren Z, Musaev DG, Davies HML. Rhodium-Stabilized Diarylcarbenes Behaving as Donor/Acceptor Carbenes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01131] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maizie Lee
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Zhi Ren
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
27
|
Shaw JT. C-H Insertion Reactions of Donor/Donor Carbenes: Inception, Investigation, and Insights. Synlett 2020; 31:838-844. [PMID: 34321717 DOI: 10.1055/s-0039-1691738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insertion reactions of donor/donor carbenes have emerged from obscurity to become a versatile method for the synthesis of a variety of cyclic structures with excellent control of diastereo- and enantioselectivity. This Account describes the origin of this project as part of a natural product synthesis and the ensuing decade of reaction development that has resulted in new asymmetric methods as well as intriguing tangential observations.
Collapse
Affiliation(s)
- Jared T Shaw
- Department of Chemistry, One Shields Ave, University of California, Davis, CA 95166, USA
| |
Collapse
|
28
|
Nickerson LA, Bergstrom BD, Gao M, Shiue YS, Laconsay CJ, Culberson MR, Knauss WA, Fettinger JC, Tantillo DJ, Shaw JT. Enantioselective synthesis of isochromans and tetrahydroisoquinolines by C-H insertion of donor/donor carbenes. Chem Sci 2019; 11:494-498. [PMID: 32874491 PMCID: PMC7439777 DOI: 10.1039/c9sc05111b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
Reports of C–H insertions forming six-membered rings containing heteroatoms are rare due to Stevens rearrangements occurring after nucleophilic attack on the carbene by a heteroatom. Using donor/donor carbenes and Rh2(R-PTAD)4 as a catalyst, we have synthesized a collection of isochroman substrates in good yield, with excellent diastereo- and enantioselectivity, and no rearrangement products were observed. Furthermore, we report the first synthesis of six-membered rings containing nitrogen by C–H insertion to form tetrahydroisoquinolines. In one case, a Stevens rearrangement product was isolated at elevated temperature from a carbamate-protected amine substrate and computational evidence suggests formation through a free ylide not bound to rhodium. Six-membered ring oxygen and nitrogen heterocycles are formed stereoselectively by C–H insertion of donor/donor carbenes.![]()
Collapse
Affiliation(s)
- Leslie A Nickerson
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Benjamin D Bergstrom
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Mingchun Gao
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Yuan-Shin Shiue
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Croix J Laconsay
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Matthew R Culberson
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Walker A Knauss
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - James C Fettinger
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Dean J Tantillo
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Jared T Shaw
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| |
Collapse
|
29
|
Pandit RP, Kim ST, Ryu DH. Asymmetric Synthesis of Enantioenriched 2‐Aryl‐2,3‐Dihydrobenzofurans by a Lewis Acid Catalyzed Cyclopropanation/Intramolecular Rearrangement Sequence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Seung Tae Kim
- Department of ChemistrySungkyunkwan University 300, Cheoncheon, Jangan Suwon 16419 Korea
| | - Do Hyun Ryu
- Department of ChemistrySungkyunkwan University 300, Cheoncheon, Jangan Suwon 16419 Korea
| |
Collapse
|
30
|
Pandit RP, Kim ST, Ryu DH. Asymmetric Synthesis of Enantioenriched 2-Aryl-2,3-Dihydrobenzofurans by a Lewis Acid Catalyzed Cyclopropanation/Intramolecular Rearrangement Sequence. Angew Chem Int Ed Engl 2019; 58:13427-13432. [PMID: 31309680 DOI: 10.1002/anie.201906954] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/14/2022]
Abstract
A cyclopropanation/intramolecular rearrangement initiated by the Michael addition of in situ generated ortho-quinone methides (o-QMs) has been developed for the enantioselective synthesis of 2-aryl-2,3-dihydrobenzofurans containing two consecutive stereogenic centers, including a quaternary carbon atom. In the presence of a chiral oxazaborolidinium ion catalyst, the reaction proceeded in excellent yields (up to 95 %) with excellent stereoselectivity (up to >99 ee, up to >20:1 d.r.).
Collapse
Affiliation(s)
- Rameshwar Prasad Pandit
- Department of Chemistry, Sungkyunkwan University, 300, Cheoncheon, Jangan, Suwon, 16419, Korea
| | - Seung Tae Kim
- Department of Chemistry, Sungkyunkwan University, 300, Cheoncheon, Jangan, Suwon, 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, 300, Cheoncheon, Jangan, Suwon, 16419, Korea
| |
Collapse
|
31
|
Kim Y, Choi YS, Hong SK, Park YS. Friedel-Crafts alkylation with α-bromoarylacetates for the preparation of enantioenriched 2,2-diarylethanols. Org Biomol Chem 2019; 17:4554-4563. [PMID: 30994667 DOI: 10.1039/c9ob00706g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Highly enantioenriched 2,2-diarylethanols can be efficiently synthesized through the Friedel-Crafts alkylation of (hetero)arenes with configurationally labile α-bromoarylacetates. The substitution of highly diastereoenriched α-bromoarylacetates occurs in the presence of AgOTf, and the subsequent reduction affords diverse 2,2-diarylethanols with high yields and enantioselectivities up to 99 : 1 er. In addition, the application of this asymmetric synthetic methodology to the preparation of highly enantioenriched dihydrobenzofuran and indoline derivatives is demonstrated.
Collapse
Affiliation(s)
- Yongtae Kim
- Department of Chemistry, Konkuk University, Seoul 05029, Republic of Korea.
| | | | | | | |
Collapse
|
32
|
Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization. Nat Rev Chem 2019; 3:347-360. [PMID: 32995499 DOI: 10.1038/s41570-019-0099-x] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C-H Functionalization has become widely recognized as an exciting new strategy for the synthesis of complex molecular targets. Instead of relying on functional groups as the controlling elements of how molecules are assembled, it offers a totally different logic for organic synthesis. For this type of strategy to be successful, reagents and catalysts need to be developed that generate intermediates that are sufficiently reactive to functionalize C-H bonds but still capable of distinguishing between the different C-H bonds and other functional groups present in a molecule. The most well-established approaches have tended to use substrates that have inherently a favored site for C-H functionalization or rely on intramolecular reactions to control where the reaction will occur. A challenging but potentially more versatile approach would be to use catalysts to control the site-selectivity without requiring the influence of any directing group. One example that is capable of achieving such transformations is the C-H insertion chemistry of transient metal carbenes. Dirhodium tetracarboxylates have been shown to be especially effective catalysts for these reactions. This review will highlight the development of these dirhodium catalysts and illustrate their effectiveness to control both site-selective and stereoselective C-H functionalization of a wide variety of substrates.
Collapse
|
33
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Souza LW, Squitieri RA, Dimirjian CA, Hodur BM, Nickerson LA, Penrod CN, Cordova J, Fettinger JC, Shaw JT. Enantioselective Synthesis of Indolines, Benzodihydrothiophenes, and Indanes by C-H Insertion of Donor/Donor Carbenes. Angew Chem Int Ed Engl 2018; 57:15213-15216. [PMID: 30193007 PMCID: PMC6377237 DOI: 10.1002/anie.201809344] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 01/15/2023]
Abstract
We employ a single catalyst/oxidant system to enable the asymmetric syntheses of indolines, benzodihydrothiophenes, and indanes by C-H insertion of donor/donor carbenes. This methodology enables the rapid construction of densely substituted five-membered rings that form the core of many drug targets and natural products. Furthermore, oxidation of hydrazones to the corresponding diazo compounds proceeds in situ, enabling a relatively facile one- or two-pot protocol in which isolation of potentially explosive diazo alkanes is avoided. Regioselectivity studies were performed to determine the impact of sterics and electronics in donor/donor metal carbene C-H insertions to form indolines. This methodology was applied to a variety of substrates in high yield, diastereomeric, and enantiomeric ratios and to the synthesis of a patented indane estrogen receptor agonist with anti-cancer activity.
Collapse
Affiliation(s)
- Lucas W Souza
- Chemistry Department, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Richard A Squitieri
- Chemistry Department, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Christine A Dimirjian
- Chemistry Department, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Blanka M Hodur
- Chemistry Department, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Leslie A Nickerson
- Chemistry Department, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Corinne N Penrod
- Chemistry Department, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Jesus Cordova
- Chemistry Department, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - James C Fettinger
- Chemistry Department, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Jared T Shaw
- Chemistry Department, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
35
|
Ilya E, Kulikova L, Van der Eycken EV, Voskressensky L. Recent Advances in Phthalan and Coumaran Chemistry. ChemistryOpen 2018; 7:914-929. [PMID: 30498677 PMCID: PMC6250979 DOI: 10.1002/open.201800184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 12/12/2022] Open
Abstract
Oxygen-containing heterocycles are common in biologically active compounds. In particular, phthalan and coumaran cores are found in pharmaceuticals, organic electronics, and other useful medical and technological applications. Recent research has expanded the methods available for their synthesis. This Minireview presents recent advances in the chemistry of phthalans and coumarans, with the goal of overcoming synthetic challenges and facilitating the applications of phthalans and coumarans.
Collapse
Affiliation(s)
- Efimov Ilya
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| | - Larisa Kulikova
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| | - Erik V. Van der Eycken
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)Department of ChemistryKU Leuven Celestijnenlaan 200F3001LeuvenBelgium
| | - Leonid Voskressensky
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| |
Collapse
|
36
|
Souza LW, Squitieri RA, Dimirjian CA, Hodur BM, Nickerson LA, Penrod CN, Cordova J, Fettinger JC, Shaw JT. Enantioselective Synthesis of Indolines, Benzodihydrothiophenes, and Indanes by C−H Insertion of Donor/Donor Carbenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lucas W. Souza
- Chemistry DepartmentUniversity of California, Davis One Shields Ave Davis CA 95616 USA
| | - Richard A. Squitieri
- Chemistry DepartmentUniversity of California, Davis One Shields Ave Davis CA 95616 USA
| | | | - Blanka M. Hodur
- Chemistry DepartmentUniversity of California, Davis One Shields Ave Davis CA 95616 USA
| | - Leslie A. Nickerson
- Chemistry DepartmentUniversity of California, Davis One Shields Ave Davis CA 95616 USA
| | - Corinne N. Penrod
- Chemistry DepartmentUniversity of California, Davis One Shields Ave Davis CA 95616 USA
| | - Jesus Cordova
- Chemistry DepartmentUniversity of California, Davis One Shields Ave Davis CA 95616 USA
| | - James C. Fettinger
- Chemistry DepartmentUniversity of California, Davis One Shields Ave Davis CA 95616 USA
| | - Jared T. Shaw
- Chemistry DepartmentUniversity of California, Davis One Shields Ave Davis CA 95616 USA
| |
Collapse
|
37
|
Feng W, Yang H, Wang Z, Gou BB, Chen J, Zhou L. Enantioselective [3 + 2] Formal Cycloaddition of 1-Styrylnaphthols with Quinones Catalyzed by a Chiral Phosphoric Acid. Org Lett 2018; 20:2929-2933. [DOI: 10.1021/acs.orglett.8b00988] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wang Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Zhe Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Bo-Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
38
|
Zheng Y, Bao M, Yao R, Qiu L, Xu X. Palladium-catalyzed carbene/alkyne metathesis with enynones as carbene precursors: synthesis of fused polyheterocycles. Chem Commun (Camb) 2018; 54:350-353. [PMID: 29236111 DOI: 10.1039/c7cc08221e] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented palladium-catalyzed novel carbene/alkyne metathesis cascade reaction of alkyne-tethered enynones is described. This reaction affords fused polyheterocycles in moderate to good yields. The transformation begins with Pd-catalyzed 5-exo-dig cyclization of the enynone to form the donor/donor metal carbene, which then undergoes metathesis with the alkyne followed by electrophilic aromatic substitution.
Collapse
Affiliation(s)
- Yang Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | |
Collapse
|
39
|
Tindall DJ, Werlé C, Goddard R, Philipps P, Farès C, Fürstner A. Structure and Reactivity of Half-Sandwich Rh(+3) and Ir(+3) Carbene Complexes. Catalytic Metathesis of Azobenzene Derivatives. J Am Chem Soc 2018; 140:1884-1893. [DOI: 10.1021/jacs.7b12673] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniel J. Tindall
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Christophe Werlé
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Petra Philipps
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|