1
|
Zhang G, Feng B, Wang Y, Chen J, Ma X, Song Q. 1,1-Oxycarbonation of Terminal Alkynes via Sequential Borylation, 1,2-Migration, and Oxidation with Oxone. Org Lett 2024; 26:3109-3113. [PMID: 38552168 DOI: 10.1021/acs.orglett.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Alkynes are readily available and multifunctional synthetic intermediates, but their 1,1-oxofunctionalization remains challenging. Herein, we report a 1,1-oxycarbonation of terminal alkynes to construct ketones through sequential borylation, 1,2-carbon migration, and oxidation with Oxone as the proton source and oxidant. The synthetic potential of this transformation is showcased by the broad functional groups, scale-up synthesis, and diverse product transformations.
Collapse
Affiliation(s)
- Guan Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bofan Feng
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yutong Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinglong Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Das KM, Pal A, Surya T L, Roy L, Thakur A. Cu(II) Promoted C(sp 3 )-H Activation in Unactivated Cycloalkanes: Oxo-Alkylation of Styrenes to Synthesize β-Disubstituted Ketones. Chemistry 2024; 30:e202303776. [PMID: 38055713 DOI: 10.1002/chem.202303776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
We report the Cu(II) catalyzed synthesis of β-disubstituted ketones from styrene via oxo-alkylation with unactivated cycloalkanes as the alkylating agent in presence of tert-butylhydroperoxide (TBHP) and 1-methylimidazole as oxidant and base respectively. β-disubstituted ketones are known to be synthesized by using either expensive Ru/Ir complexes, or low-cost metal complexes (e. g., Fe, Mn) with activated species like aldehyde, acid, alcohol, or phthalimide derivatives as the alkylating agent, however, use of unactivated cycloalkanes directly as the alkylating agent remains challenging. A wide range of aliphatic C-H substrates as well as various olefinic arenes and heteroarene (35 substrates including 14 new substrates) are well-tolerated in this method. Hammett analysis shed more light on the substitution effect in the olefinic part on the overall mechanism. Furthermore, the controlled experiments, kinetic isotope effect study, and theoretical calculations (DFT) enable us to gain deeper insight of mechanistic intricacies of this new simple and atom-economic methodology.
Collapse
Affiliation(s)
- Krishna Mohan Das
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Lakshmi Surya T
- Institute of Chemical Technology Mumbai, IOC Odisha Campus, Bhubaneswar, Odisha, 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus, Bhubaneswar, Odisha, 751013, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
3
|
Yang X, Zhang G, Zhou J, Zhou C, Wang L, Li P. Microwave-promoted radical addition/cyclization of biaryl vinyl ketones with diacyl peroxides in water under metal-free conditions. Org Biomol Chem 2023; 21:4018-4021. [PMID: 37128770 DOI: 10.1039/d3ob00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This communication reports an efficient microwave-promoted radical addition/cyclization reaction of biaryl vinyl ketones with diacyl peroxides in water under metal-free conditions. A series of 10-methyl-10-benzyl(alkyl)phenanthren-9(10H)-ones were obtained in high yields with good functional group tolerance.
Collapse
Affiliation(s)
- Xingyu Yang
- College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China.
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Gan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Jingwen Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Pinhua Li
- College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China.
| |
Collapse
|
4
|
Copper-Catalyzed Radical Trifluoromethylalkynylation of Unactivated Alkenes with Terminal Alkynes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Ghosh S, Chakrabortty R, Ganesh V. Dual Functionalization of Alkynes Utilizing the Redox Characteristics of Transition Metal Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202100838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sudipta Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Rajesh Chakrabortty
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| |
Collapse
|
6
|
Liu H, Yu JT, Pan C. Diacyl peroxides: practical reagents as aryl and alkyl radical sources. Chem Commun (Camb) 2021; 57:6707-6724. [PMID: 34137395 DOI: 10.1039/d1cc02322e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diacyl peroxides, which can be easily synthesized from corresponding carboxylic acids, are commonly utilized as radical initiators and one electron oxidants. Under thermal, transition-metal catalysis or irradiation conditions the cleavage of relatively weak O-O bonds would occur followed by CO2 extrusion to generate the corresponding aryl or alkyl radicals. Thus, diacyl peroxides can be employed as ideal arylating and alkylating reagents in organic synthesis, including C-H/N-H arylation/alkylation, aryl/alkyl radical addition to unsaturated bonds, hetero arylation/alkylation, eliminative arylation/alkylation, perfluoroalkylation etc. Moreover, these arylation/alkylation protocols have been successfully utilized in the synthesis and late-stage functionalization of natural products as well as bioactive molecules. In this review, recent advances on arylation and alkylation using diacyl peroxides as aryl and alkyl radical sources are summarized and discussed.
Collapse
Affiliation(s)
- Han Liu
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China. and School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
7
|
Abstract
A copper-catalyzed radical oxycyanation of unactivated alkenes and styrenes to produce beta-cyanohydrin derivatives with the cyano group attached on the more substituted carbon center was reported.
Collapse
Affiliation(s)
- Yuehua Zeng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Daqi Lv
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| |
Collapse
|
8
|
Kawamura S, Mukherjee S, Sodeoka M. Recent advances in reactions using diacyl peroxides as sources of O- and C-functional groups. Org Biomol Chem 2021; 19:2096-2109. [DOI: 10.1039/d0ob02349c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review summarizes recent advances in reactions utilizing diacyl peroxides as O- and C-sources, with examples illustrating how the reactivity of diacyl peroxides in organic reactions can be controlled.
Collapse
Affiliation(s)
- Shintaro Kawamura
- Catalysis and Integrated Research Group
- RIKEN Center for Sustainable Resource Science
- Wako
- Japan
- Synthetic Organic Chemistry Laboratory
| | - Subrata Mukherjee
- Catalysis and Integrated Research Group
- RIKEN Center for Sustainable Resource Science
- Wako
- Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group
- RIKEN Center for Sustainable Resource Science
- Wako
- Japan
- Synthetic Organic Chemistry Laboratory
| |
Collapse
|
9
|
Liu YA, Liao X, Chen H. Recent Progress in Radical Decarboxylative Functionalizations Enabled by Transition-Metal (Ni, Cu, Fe, Co or Cr) Catalysis. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractAliphatic carboxylic acids are abundant in natural and synthetic sources and are widely used as connection points in many chemical transformations. Radical decarboxylative functionalization promoted by transition-metal catalysis has achieved great success, enabling carboxylic acids to be easily transformed into a wide variety of products. Herein, we highlight the recent advances made on transition-metal (Ni, Cu, Fe, Co or Cr) catalyzed C–X (X = C, N, H, O, B, or Si) bond formation as well as syntheses of ketones, amino acids, alcohols, ethers and difluoromethyl derivatives via radical decarboxylation of carboxylic acids or their derivatives, including, among others, redox-active esters (RAEs), anhydrides, and diacyl peroxides.1 Introduction2 Ni-Catalyzed Decarboxylative Functionalizations3 Cu-Catalyzed Decarboxylative Functionalizations4 Fe-Catalyzed Decarboxylative Functionalizations5 Co- and Cr-Catalyzed Decarboxylative Functionalizations6 Conclusions
Collapse
Affiliation(s)
- Yahu A Liu
- Discovery Chemistry, Genomics Institute of the Novartis Research Foundation
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University
| | - Hui Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University
| |
Collapse
|
10
|
Tian H, Xu W, Liu Y, Wang Q. Unnatural α-Amino Acid Synthesized through α-Alkylation of Glycine Derivatives by Diacyl Peroxides. Org Lett 2020; 22:5005-5008. [DOI: 10.1021/acs.orglett.0c01574] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hao Tian
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Wentao Xu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| |
Collapse
|
11
|
Dong XY, Cheng JT, Zhang YF, Li ZL, Zhan TY, Chen JJ, Wang FL, Yang NY, Ye L, Gu QS, Liu XY. Copper-Catalyzed Asymmetric Radical 1,2-Carboalkynylation of Alkenes with Alkyl Halides and Terminal Alkynes. J Am Chem Soc 2020; 142:9501-9509. [PMID: 32338510 DOI: 10.1021/jacs.0c03130] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A copper-catalyzed intermolecular three-component asymmetric radical 1,2-carboalkynylation of alkenes has been developed, providing straightforward access to diverse chiral alkynes from readily available alkyl halides and terminal alkynes. The utilization of a cinchona alkaloid-derived multidentate N,N,P-ligand is crucial for the efficient radical generation from mildly oxidative precursors by copper and the effective inhibition of the undesired Glaser coupling side reaction. The substrate scope is broad, covering (hetero)aryl-, alkynyl-, and aminocarbonyl-substituted alkenes, (hetero)aryl and alkyl as well as silyl alkynes, and tertiary to primary alkyl radical precursors with excellent functional group compatibility. Facile transformations of the obtained chiral alkynes have also been demonstrated, highlighting the excellent complementarity of this protocol to direct 1,2-dicarbofunctionalization reactions with C(sp2/sp3)-based reagents.
Collapse
Affiliation(s)
- Xiao-Yang Dong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiang-Tao Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Feng Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tian-Ya Zhan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Jun Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fu-Li Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Lei J, Gao H, Huang M, Liu X, Mao Y, Xie X. Copper-catalyzed stereoselective alkylhydrazination of alkynes. Chem Commun (Camb) 2020; 56:920-923. [DOI: 10.1039/c9cc07998j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient copper-catalyzed stereoselective alkylhydrazination of alkynes, leading to tri-substituted (E)-alkenylhydrazines, has been developed.
Collapse
Affiliation(s)
- Jian Lei
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Huaxin Gao
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Miaoling Huang
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Xiao Liu
- Dongguan Institute for Food and Drug Control
- Dongguan 523808
- P. R. China
| | - Yangfan Mao
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| |
Collapse
|
13
|
Ligand-controlled phosphine-free Co(II)-catalysed cross-coupling of secondary and primary alcohols. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Tian H, Xu W, Liu Y, Wang Q. Radical alkylation of C(sp3)–H bonds with diacyl peroxides under catalyst-free conditions. Chem Commun (Camb) 2019; 55:14813-14816. [DOI: 10.1039/c9cc08056b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Herein, we describe a protocol for alkylation reactions of C(sp3)–H bonds with diacyl peroxides by means of a process involving cross-coupling between an alkyl radical and an α-aminoalkyl radical.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wentao Xu
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
15
|
Deng W, Ye C, Li Y, Li D, Bao H. Iron-Catalyzed Oxyalkylation of Terminal Alkynes with Alkyl Iodides. Org Lett 2018; 21:261-265. [PMID: 30582704 DOI: 10.1021/acs.orglett.8b03689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general oxyalkylation of terminal alkynes enabled by iron catalysis has been developed. Primary and secondary alkyl iodides acted as the alkylating reagents and afforded a range of α-alkylated ketones under mild reaction conditions. Acetyl tert-butyl peroxide (TBPA) was used as the radical relay precursor, providing the initiated methyl radical to start the radical relay process. Preliminary mechanistic studies were conducted, and late-stage functionalizations of natural product derivatives were performed.
Collapse
Affiliation(s)
- Weili Deng
- Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences , Fujian Normal University , 1 Keji Road , Fuzhou 350117 , P. R. China
| | - Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. of China
| | - Daliang Li
- Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences , Fujian Normal University , 1 Keji Road , Fuzhou 350117 , P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. of China
| |
Collapse
|
16
|
de Souza GFP, Bonacin JA, Salles AG. Visible-Light-Driven Epoxyacylation and Hydroacylation of Olefins Using Methylene Blue/Persulfate System in Water. J Org Chem 2018; 83:8331-8340. [DOI: 10.1021/acs.joc.8b01026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriela F. P. de Souza
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo, 13084-862, Brazil
| | - Juliano A. Bonacin
- Department of Inorganic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo, 13084-862, Brazil
| | - Airton G. Salles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo, 13084-862, Brazil
| |
Collapse
|
17
|
Ge L, Jian W, Zhou H, Chen S, Ye C, Yu F, Qian B, Li Y, Bao H. Iron-Catalyzed Vinylic C-H Alkylation with Alkyl Peroxides. Chem Asian J 2018; 13:2522-2528. [PMID: 29767475 DOI: 10.1002/asia.201800534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/14/2018] [Indexed: 01/19/2023]
Abstract
A variety of alkyl peresters and alkyl diacyl peroxides, which are readily accessible from carboxylic acids, are utilized as general primary, secondary, and tertiary alkylating reagents for iron-catalyzed vinylic C-H alkylation of vinyl arenes, dienes, and 1,3-enynes. This transformation affords olefinic products in up to 98 % yield with high E/Z values. A broad range of functionalities, including carboxyl, boronic acid, methoxy, ester, amino, and halides, are tolerated. This protocol provides a facile approach to some olefins that are difficult to access, and hence, offers an alternative to existing systems. The synthetic utility of this method is demonstrated by late-stage functionalization of selected natural-product derivatives.
Collapse
Affiliation(s)
- Liang Ge
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P.R. China
| | - Wujun Jian
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P.R. China
| | - Huan Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P.R. China
| | - Shaowei Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P.R. China
| | - Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P.R. China
| | - Fei Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P.R. China
| | - Bo Qian
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P.R. China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P.R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
18
|
Deng W, Feng W, Li Y, Bao H. Merging Visible-Light Photocatalysis and Transition-Metal Catalysis in Three-Component Alkyl-Fluorination of Olefins with a Fluoride Ion. Org Lett 2018; 20:4245-4249. [PMID: 29956940 DOI: 10.1021/acs.orglett.8b01658] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Weili Deng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
| | - Weiwei Feng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| |
Collapse
|
19
|
Ye C, Qian B, Li Y, Su M, Li D, Bao H. Iron-Catalyzed Dehydrative Alkylation of Propargyl Alcohol with Alkyl Peroxides To Form Substituted 1,3-Enynes. Org Lett 2018; 20:3202-3205. [PMID: 29786445 DOI: 10.1021/acs.orglett.8b01043] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This paper reports a new method for the generation of substituted 1,3-enynes, whose synthesis by other methods could be a challenge. The dehydrative decarboxylative cascade coupling reaction of propargyl alcohol with alkyl peroxides is enabled by an iron catalyst and alkylating reagents. Primary, secondary, and tertiary alkyl groups can be introduced into 1,3-enynes, affording various substituted 1,3-enynes in moderate to good yields. Mechanistic studies suggest the involvement of a radical-polar crossover pathway.
Collapse
Affiliation(s)
- Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China.,University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Bo Qian
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China.,University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Daliang Li
- Biomedical Research Center of South China & College of Life Science , Fujian Normal University , No. 1 Keji Road, Shangjie , Fuzhou , Fujian 350117 , P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China.,University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| |
Collapse
|
20
|
Cui Z, Du DM. FeCl2-Catalyzed Decarboxylative Radical Alkylation/Cyclization of Cinnamamides: Access to Dihydroquinolinone and Pyrrolo[1,2-a]indole Analogues. J Org Chem 2018; 83:5149-5159. [DOI: 10.1021/acs.joc.8b00511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhihao Cui
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Da-Ming Du
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
21
|
Tlahuext-Aca A, Garza-Sanchez RA, Schäfer M, Glorius F. Visible-Light-Mediated Synthesis of Ketones by the Oxidative Alkylation of Styrenes. Org Lett 2018; 20:1546-1549. [PMID: 29481096 DOI: 10.1021/acs.orglett.8b00272] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative coupling of photogenerated alkyl radicals with readily available styrenes is disclosed. This visible-light-mediated method allows rapid access to a wide range of α-alkyl-acetophenones in good yields and with high functional group tolerance. In addition, the developed protocol features room temperature conditions, low photocatalyst loadings, and the use of dimethyl sulfoxide as nontoxic and mild terminal oxidant.
Collapse
Affiliation(s)
- Adrian Tlahuext-Aca
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany
| | - R Aleyda Garza-Sanchez
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany
| | - Michael Schäfer
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany
| | - Frank Glorius
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany
| |
Collapse
|
22
|
Qian B, Chen S, Wang T, Zhang X, Bao H. Iron-Catalyzed Carboamination of Olefins: Synthesis of Amines and Disubstituted β-Amino Acids. J Am Chem Soc 2017; 139:13076-13082. [PMID: 28857555 DOI: 10.1021/jacs.7b06590] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bo Qian
- State
Key Laboratory of Structural Chemistry, Key Laboratory of Coal to
Ethylene Glycol and Its Related Technology, Fujian Institute of Research
on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
| | - Shaowei Chen
- State
Key Laboratory of Structural Chemistry, Key Laboratory of Coal to
Ethylene Glycol and Its Related Technology, Fujian Institute of Research
on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
| | - Ting Wang
- Lab
of Computational Chemistry and Drug Design, Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Xinhao Zhang
- Lab
of Computational Chemistry and Drug Design, Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Hongli Bao
- State
Key Laboratory of Structural Chemistry, Key Laboratory of Coal to
Ethylene Glycol and Its Related Technology, Fujian Institute of Research
on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
| |
Collapse
|