1
|
Ji G, Li X, Zhang J. Anti-Markovnikov Hydroacylation of Aryl Alkenes with Aldehydes Enabled by Photo/Cobalt Dual Catalysis. Org Lett 2025; 27:334-339. [PMID: 39731548 DOI: 10.1021/acs.orglett.4c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Herein we describe a dual photo/cobalt-catalyzed anti-Markovnikov hydroacylation of aryl alkenes using aldehyde as acyl source. The key to success is the cobalt catalyzed hydrogen atom transfer, which enables effective formation of the desired products and efficient regeneration of the photocatalyst under mild conditions. This protocol features broad substrate scopes, good functional group tolerance, high efficiency and regioselectivity.
Collapse
Affiliation(s)
- Guanghao Ji
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| | - Xuan Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| | - Jing Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| |
Collapse
|
2
|
Hoffmann N, Gomez Fernandez MA, Desvals A, Lefebvre C, Michelin C, Latrache M. Photochemical reactions of biomass derived platform chemicals. Front Chem 2024; 12:1485354. [PMID: 39720554 PMCID: PMC11666374 DOI: 10.3389/fchem.2024.1485354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Platform chemicals obtained from biomass will play an important role in chemical industry. Already existing compounds or not yet established chemicals are produced from this renewable feedstock. Using photochemical reactions as sustainable method for the conversion of matter furthermore permits to develop processes that are interesting from the ecological and economical point of view. Furans or levoglucosenone are thus obtained from carbohydrate containing biomass. Photochemical rearrangements, photooxygenation reactions or photocatalytic radical reactions can be carried out with such compounds. Also, sugars such pentoses or hexoses can be more easily transformed into heterocyclic target compounds when such photochemical reactions are used. Lignin is an important source for aromatic compounds such as vanillin. Photocycloaddition of these compounds with alkenes or the use light supported multicomponent reactions yield interesting target molecules. Dyes, surfactants or compounds possessing a high degree of molecular diversity and complexity have been synthesized with photochemical key steps. Alkenes as platform chemicals are also produced by fermentation processes, for example, with cyanobacteria using biological photosynthesis. Such alkenes as well as terpenes may further be transformed in photochemical reactions yielding, for example, precursors of jet fuels.
Collapse
Affiliation(s)
- Norbert Hoffmann
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS, Université de Strasbourg, UMR 7504, Strasbourg, France
| | - Mario Andrés Gomez Fernandez
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS, Université de Strasbourg, UMR 7504, Strasbourg, France
| | - Arthur Desvals
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS, Université de Strasbourg, UMR 7504, Strasbourg, France
| | - Corentin Lefebvre
- Laboratoire de Glycochimie et des Agroressources d’Amiens (LG2A), Université de Picardie Jules Verne (UPJV), Amiens, France
| | - Clément Michelin
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, Clermont-Ferrand, France
| | - Mohammed Latrache
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), UMR CNRS 8076, Université Paris-Saclay, Orsay, France
| |
Collapse
|
3
|
Ji G, Chen X, Zhang J. Direct ketone synthesis from primary alcohols and alkenes enabled by a dual photo/cobalt catalysis. Nat Commun 2024; 15:6816. [PMID: 39122715 PMCID: PMC11316105 DOI: 10.1038/s41467-024-51190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Catalytic methods to couple alcohol and alkene feedstocks are highly valuable in synthetic chemistry. The direct oxidative coupling of primary alcohols and alkenes offers a streamlined approach to ketone synthesis. Currently, available methods are based on transition metal-catalyzed alkene hydroacylation, which involves the generation of an electrophilic aldehyde intermediate from primary alcohol dehydrogenation. These methods generally require high reaction temperatures and a high loading of precious metal catalysts and are predominantly effective for branch-selective reactions with electron-rich alkenes. Herein, we designed a dual photo/cobalt-catalytic method to manipulate the reactivity of nucleophilic ketyl radicals for the synthesis of ketones from primary alcohols and alkenes in complementary reactivity and selectivity. This protocol exhibits exceptional scope across both primary alcohols and alkenes with high chemo- and regio-selectivity under mild reaction conditions. Mechanism investigations reveal the essential role of cobalt catalysis in enabling efficient catalysis and broad substrate scope.
Collapse
Affiliation(s)
- Guanghao Ji
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, 430072, China
| | - Xinqiang Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, 430072, China
| | - Jing Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
4
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
5
|
Minezawa N, Suzuki K, Okazaki S. A density functional study of the photocatalytic degradation of polycaprolactone by the decatungstate anion in acetonitrile solution. Phys Chem Chem Phys 2024; 26:11746-11754. [PMID: 38563826 DOI: 10.1039/d4cp00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A recent experimental study has reported that decatungstate [W10O32]4- can degrade various polyesters in the presence of light and molecular oxygen [Li et al., Nanoscale, 2023, 15, 15038]. We apply density functional theory to the photocatalyst-polycaprolactone model complex in acetonitrile solution and elucidate the degradation mechanisms and catalytic cycle. We consider hydrogen atom transfer (HAT) and single electron transfer (SET) mechanisms. The potential energy profiles show that the former proceeds exergonically in a single step but that the latter involves a subsequent proton transfer and finally yields HAT products as well. Oxygenated polymer species can regain the transferred hydrogen and regenerate the reduced photocatalyst. We propose a photocatalytic cycle that realizes both the photocatalyst regeneration and the polymer degradation.
Collapse
Affiliation(s)
- Noriyuki Minezawa
- Department of Applied Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8589, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Susumu Okazaki
- Department of Applied Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8589, Japan.
| |
Collapse
|
6
|
Gómez Fernández MA, Hoffmann N. Photocatalytic Transformation of Biomass and Biomass Derived Compounds-Application to Organic Synthesis. Molecules 2023; 28:4746. [PMID: 37375301 PMCID: PMC10301391 DOI: 10.3390/molecules28124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Biomass and biomass-derived compounds have become an important alternative feedstock for chemical industry. They may replace fossil feedstocks such as mineral oil and related platform chemicals. These compounds may also be transformed conveniently into new innovative products for the medicinal or the agrochemical domain. The production of cosmetics or surfactants as well as materials for different applications are examples for other domains where new platform chemicals obtained from biomass can be used. Photochemical and especially photocatalytic reactions have recently been recognized as being important tools of organic chemistry as they make compounds or compound families available that cannot be or are difficultly synthesized with conventional methods of organic synthesis. The present review gives a short overview with selected examples on photocatalytic reactions of biopolymers, carbohydrates, fatty acids and some biomass-derived platform chemicals such as furans or levoglucosenone. In this article, the focus is on application to organic synthesis.
Collapse
Affiliation(s)
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
7
|
Zhou S, Liu T, Bao X. Direct intermolecular C(sp)–H amidation with dioxazolones via synergistic decatungstate anion photocatalysis and nickel catalysis: A combined experimental and computational study. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Kawamoto T, Fukuyama T, Picard B, Ryu I. New directions in radical carbonylation chemistry: combination with electron catalysis, photocatalysis and ring-opening. Chem Commun (Camb) 2022; 58:7608-7617. [PMID: 35758516 DOI: 10.1039/d2cc02700c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical carbonylation offers potent methods for introducing carbon monoxide into organic molecules. This feature article focuses on our current efforts to develop new strategies for radical carbonylation, which include electron-transfer carbonylation, site-selective C(sp3)-H carbonylation by a photocatalyst and ring-opening carbonylation.
Collapse
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| | - Takahide Fukuyama
- Department of Chemistry, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan
| | - Baptiste Picard
- Organization for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan.
| | - Ilhyong Ryu
- Organization for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan. .,Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010, Taiwan
| |
Collapse
|
9
|
Galeotti M, Salamone M, Bietti M. Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp 3)-H functionalization promoted by electrophilic reagents. Chem Soc Rev 2022; 51:2171-2223. [PMID: 35229835 DOI: 10.1039/d1cs00556a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct functionalization of C(sp3)-H bonds represents one of the most investigated approaches to develop new synthetic methodology. Among the available strategies for intermolecular C-H bond functionalization, increasing attention has been devoted to hydrogen atom transfer (HAT) based procedures promoted by radical or radical-like reagents, that offer the opportunity to introduce a large variety of atoms and groups in place of hydrogen under mild conditions. Because of the large number of aliphatic C-H bonds displayed by organic molecules, in these processes control over site-selectivity represents a crucial issue, and the associated factors have been discussed. In this review article, attention will be devoted to the role of electronic effects on C(sp3)-H bond functionalization site-selectivity. Through an analysis of the recent literature, a detailed description of the HAT reagents employed in these processes, the associated mechanistic features and the selectivity patterns observed in the functionalization of substrates of increasing structural complexity will be provided.
Collapse
Affiliation(s)
- Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| |
Collapse
|
10
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
11
|
Wang YT, Shih YL, Wu YK, Ryu I. Site‐Selective C(sp3)‐H Alkenylation Using Decatungstate Anion as Photocatalyst. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Yi-Lun Shih
- National Yang Ming Chiao Tung University TAIWAN
| | - Yen-Ku Wu
- National Chiao Tung University TAIWAN
| | | |
Collapse
|
12
|
Lefebvre C, Van Gysel T, Michelin C, Rousset E, Djiré D, Allais F, Hoffmann N. Photocatalytic Radical Addition to Levoglucosenone. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Corentin Lefebvre
- ICMR, Equipe de Photochimie, CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
| | - Terence Van Gysel
- ICMR, Equipe de Photochimie, CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
| | - Clément Michelin
- ICMR, Equipe de Photochimie, CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
- Clermont Auvergne INP, ICCF Université Clermont Auvergne, CNRS 63000 Clermont-Ferrand France
| | - Elodie Rousset
- ICMR, Groupe chimie de coordination CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
| | - Djibril Djiré
- ICMR, Equipe de Photochimie, CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
- URD Agro-Biotechnologies Industrielles (ABI) CEBB AgroParisTech 51110 Pomacle France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI) CEBB AgroParisTech 51110 Pomacle France
| | - Norbert Hoffmann
- ICMR, Equipe de Photochimie, CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
| |
Collapse
|
13
|
Niu B, Blackburn BG, Sachidanandan K, Cooke MV, Laulhé S. Metal-free visible-light-promoted C(sp 3)-H functionalization of aliphatic cyclic ethers using trace O 2. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:9454-9459. [PMID: 37180766 PMCID: PMC10181853 DOI: 10.1039/d1gc03482k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Presented is a light-promoted C-C bond forming reaction yielding sulfone and phosphate derivatives at room temperature in the absence of metals or photoredox catalyst. This transformation proceeds in neat conditions through an auto-oxidation mechanism which is maintained through the leaching of trace amounts of O2 as sole green oxidant.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bryan G Blackburn
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Krishnakumar Sachidanandan
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Maria Victoria Cooke
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Sébastien Laulhé
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Capaldo L, Ravelli D, Fagnoni M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration. Chem Rev 2021; 122:1875-1924. [PMID: 34355884 PMCID: PMC8796199 DOI: 10.1021/acs.chemrev.1c00263] [Citation(s) in RCA: 443] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Direct photocatalyzed
hydrogen atom transfer (d-HAT) can be considered
a method of choice for the elaboration of
aliphatic C–H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic
cleavage of such bonds in organic compounds. Selective C–H
bond elaboration may be achieved by a judicious choice of the hydrogen
abstractor (key parameters are the electronic character and the molecular
structure), as well as reaction additives. Different are the classes
of PCsHAT available, including aromatic ketones, xanthene
dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin
and a tris(amino)cyclopropenium radical dication. The processes (mainly
C–C bond formation) are in most cases carried out under mild
conditions with the help of visible light. The aim of this review
is to offer a comprehensive survey of the synthetic applications of
photocatalyzed d-HAT.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
15
|
Ueda M, Kitano A, Matsubara H. A computational study of site-selective hydrogen abstraction by sulfate radical anion. Org Biomol Chem 2021; 19:4775-4782. [PMID: 33978050 DOI: 10.1039/d1ob00587a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many hydrogen abstraction reactions on sp3 carbons with oxyradicals take place site-selectively (regioselectively). To investigate this selectivity, ab initio and density functional theory (DFT) calculations were carried out using cyclopentanone and SO4-˙ as the substrate and oxyradical, respectively. At the ωB97XD/6-311+G(d,p) level, the energy barriers for the forward process (ΔE1‡) of both α- and β-hydrogen abstraction were predicted to be 54.6 and 50.9 kJ mol-1, respectively. Consideration of solvent effects (acetonitrile) decreased these energy barriers to 33.2 and 26.1 kJ mol-1, respectively. These calculation outcomes suggested that β-hydrogen abstraction would be favourable, which supports experimental findings (i.e. β-selective abstraction). At the ωB97XD level, investigations into hydrogen abstraction from cyclohexanone with SO4-˙ confirmed the regioselectivity observed experimentally. Hydrogen abstractions from 2-propylpyridine and 3-methyl-1-butanol using SO4-˙, which are unknown reactions, were also calculated using the DFT method, and the predicted regioselectivity was consistent with that in the known reactions using tetrabutylammonium decatungstate (TBADT). In addition, regioselectivities in unexplored hydrogen abstractions of cyclopentanone by several oxyradicals were predicted. Natural bond orbital (NBO) analysis carried out at the ωB97XD level indicated that the transferred hydrogen atom is partially positively charged when abstracted by an oxyradical. Interestingly, hydrogens bonded to the most positively charged carbon in the substrate were predominantly abstracted by oxyradicals in practice, which should be a simple compass for predicting regioselectivity in the functionalisation of C(sp3)-H bonds with oxyradicals.
Collapse
Affiliation(s)
- Masahiro Ueda
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Atsuki Kitano
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Hiroshi Matsubara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
16
|
Yu JT, Li Y, Chen R, Yang Z, Pan C. DTBP-promoted site-selective α-alkoxyl C-H functionalization of alkyl esters: synthesis of 2-alkyl ester substituted chromanones. Org Biomol Chem 2021; 19:4520-4528. [PMID: 33928985 DOI: 10.1039/d1ob00605c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct C-H functionalization of ethyl acetates was developed, delivering a variety of 1-(4-oxochroman-2-yl)ethyl acetate derivatives by reacting with chromones. This reaction has a wide substrate scope with excellent site-selective C-H activation at the inactive α-hydrogen of the alkoxyl group instead of the α-hydrogen of the carbonyl group under radical conditions. Compared with other protocols for the α-alkoxyl C-H functionalization of alkyl esters, a distinguishing feature of this reaction is that no metal catalyst was required, with DTBP as the sole oxidant.
Collapse
Affiliation(s)
- Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Yiting Li
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Rongzhen Chen
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China. and School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
17
|
Ueda M, Kamikawa K, Fukuyama T, Wang YT, Wu YK, Ryu I. Site-Selective Alkenylation of Unactivated C(sp 3 )-H Bonds Mediated by Compact Sulfate Radical. Angew Chem Int Ed Engl 2021; 60:3545-3550. [PMID: 33128429 DOI: 10.1002/anie.202011992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/27/2020] [Indexed: 01/07/2023]
Abstract
A broad variety of unactivated acyclic and alicyclic substrates cleanly undergo site-selective alkenylation of unactivated C(sp3 )-H bonds with 1,2-bis(phenylsulfonyl)ethene in the presence of persulfate. This simple transformation furnishes (E)-2-alkylvinylphenylsulfones in up to 88 % yield. In contrast with the previously reported decatungstate protocol, the current method is applicable to alkenylation of sterically hindered C-H bonds. This important advantage significantly broadens the substrate scope, and is attributed to the compact size of the sulfate radical employed in the C-H activation and cleavage.
Collapse
Affiliation(s)
- Mitsuhiro Ueda
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Kazuya Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Yi-Ting Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Yen-Ku Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Ilhyong Ryu
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Ueda M, Kamikawa K, Fukuyama T, Wang Y, Wu Y, Ryu I. Site‐Selective Alkenylation of Unactivated C(sp
3
)−H Bonds Mediated by Compact Sulfate Radical. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mitsuhiro Ueda
- Department of Chemistry Graduate School of Science Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Kazuya Kamikawa
- Department of Chemistry Graduate School of Science Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Takahide Fukuyama
- Department of Chemistry Graduate School of Science Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Yi‐Ting Wang
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
| | - Yen‐Ku Wu
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
| | - Ilhyong Ryu
- Department of Chemistry Graduate School of Science Osaka Prefecture University Sakai Osaka 599-8531 Japan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
19
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
20
|
Govaerts S, Nyuchev A, Noel T. Pushing the boundaries of C–H bond functionalization chemistry using flow technology. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00077-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractC–H functionalization chemistry is one of the most vibrant research areas within synthetic organic chemistry. While most researchers focus on the development of small-scale batch-type transformations, more recently such transformations have been carried out in flow reactors to explore new chemical space, to boost reactivity or to enable scalability of this important reaction class. Herein, an up-to-date overview of C–H bond functionalization reactions carried out in continuous-flow microreactors is presented. A comprehensive overview of reactions which establish the formal conversion of a C–H bond into carbon–carbon or carbon–heteroatom bonds is provided; this includes metal-assisted C–H bond cleavages, hydrogen atom transfer reactions and C–H bond functionalizations which involve an SE-type process to aromatic or olefinic systems. Particular focus is devoted to showcase the advantages of flow processing to enhance C–H bond functionalization chemistry. Consequently, it is our hope that this review will serve as a guide to inspire researchers to push the boundaries of C–H functionalization chemistry using flow technology.
Collapse
|
21
|
Fukuyama T, Nishikawa T, Ryu I. Site-Selective C(sp3
)-H Functionalization of Fluorinated Alkanes Driven by Polar Effects Using a Tungstate Photocatalyst. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takahide Fukuyama
- Department of Chemistry; Graduate School of Science; Osaka Prefecture University; 599-8531 Sakai Osaka Japan
| | - Tomohiro Nishikawa
- Department of Chemistry; Graduate School of Science; Osaka Prefecture University; 599-8531 Sakai Osaka Japan
| | - Ilhyong Ryu
- Department of Chemistry; Graduate School of Science; Osaka Prefecture University; 599-8531 Sakai Osaka Japan
- Department of Applied Chemistry; Graduate School of Science; National Chiao Tung University; 30010 Hsinchu Taiwan
| |
Collapse
|
22
|
Yuan Z, Yang H, Malik N, Čolović M, Weber DS, Wilson D, Bénard F, Martin RE, Warren JJ, Schaffer P, Britton R. Electrostatic Effects Accelerate Decatungstate-Catalyzed C–H Fluorination Using [18F]- and [19F]NFSI in Small Molecules and Peptide Mimics. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zheliang Yuan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S2, Canada
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Noeen Malik
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Milena Čolović
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - David S. Weber
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S2, Canada
| | - Darryl Wilson
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S2, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Rainer E. Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S2, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S2, Canada
| |
Collapse
|
23
|
Hintz H, Vanas A, Klose D, Jeschke G, Godt A. Trityl Radicals with a Combination of the Orthogonal Functional Groups Ethyne and Carboxyl: Synthesis without a Statistical Step and EPR Characterization. J Org Chem 2019; 84:3304-3320. [DOI: 10.1021/acs.joc.8b03234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Agathe Vanas
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
24
|
Chen Z, Rong MY, Nie J, Zhu XF, Shi BF, Ma JA. Catalytic alkylation of unactivated C(sp3)–H bonds for C(sp3)–C(sp3) bond formation. Chem Soc Rev 2019; 48:4921-4942. [DOI: 10.1039/c9cs00086k] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes recent advancements in catalytic direct transformation of unactivated C(sp3)–H bonds into C(sp3)–C(sp3) bonds.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University, and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- P. R. China
| | - Meng-Yu Rong
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University, and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- P. R. China
| | - Jing Nie
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University, and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- P. R. China
| | - Xue-Feng Zhu
- Genomics Institute of the Novartis Research Foundation
- San Diego
- USA
| | - Bing-Feng Shi
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Jun-An Ma
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University, and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- P. R. China
| |
Collapse
|
25
|
Bietti M. Anwendung von Mediumeffekten in Aktivierungs‐ und Deaktivierungsstrategien zur selektiven Funktionalisierung aliphatischer C‐H‐Bindungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Massimo Bietti
- Dipartimento di Scienze e Tecnologie ChimicheUniversità “Tor Vergata” Via della Ricerca Scientifica, 1 I-00133 Rome Italien
| |
Collapse
|
26
|
Fulton TJ, Alley PL, Rensch HR, Ackerman AM, Berlin CB, Krout MR. Access to Functionalized Quaternary Stereocenters via the Copper-Catalyzed Conjugate Addition of Monoorganozinc Bromide Reagents Enabled by N, N-Dimethylacetamide. J Org Chem 2018; 83:14723-14732. [PMID: 30376627 DOI: 10.1021/acs.joc.8b02201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Monoorganozinc reagents, readily obtained from alkyl bromides, display excellent reactivity with β,β-disubstituted enones and TMSCl in the presence of Cu(I) and Cu(II) salts to synthesize a variety of cyclic functionalized β-quaternary ketones in 38-99% yields and 9:1-20:1 diastereoselectivities. The conjugate addition features a pronounced improvement in DMA using monoorganozinc bromide reagents. A simple one-pot protocol that harnesses in situ generated monoorganozinc reagents delivers comparable product yields.
Collapse
Affiliation(s)
- Tyler J Fulton
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Phebe L Alley
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Heather R Rensch
- Research and Development, Bimax, Inc. , Glen Rock , Pennsylvania 17327 , United States
| | - Adriana M Ackerman
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Cameron B Berlin
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Michael R Krout
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| |
Collapse
|
27
|
Michelin C, Hoffmann N. Photosensitization and Photocatalysis—Perspectives in Organic Synthesis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03050] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clément Michelin
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Groupe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Groupe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
28
|
Bietti M. Activation and Deactivation Strategies Promoted by Medium Effects for Selective Aliphatic C-H Bond Functionalization. Angew Chem Int Ed Engl 2018; 57:16618-16637. [PMID: 29873935 DOI: 10.1002/anie.201804929] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/31/2018] [Indexed: 12/17/2022]
Abstract
Selective functionalization of unactivated aliphatic C-H bonds represents an important goal of modern synthetic chemistry. Differentiating between such bonds in organic molecules with high levels of selectivity remains a crucial issue, and a profound understanding of even the subtlest reactivity trends is needed. Among the methods that have been developed, those based on hydrogen atom transfer (HAT) have attracted considerable interest. Within this framework, medium effects have proved effective in altering the reactivity and site selectivity in synthetically useful C-H functionalization procedures. In this Review, the mechanistic features behind the available strategies are discussed. It is shown that hydrogen bonding and acid-base interactions can promote C-H bond activation or deactivation toward HAT reagents, thereby providing fine-control over the site selectivity and product chemoselectivity as well as useful guidelines for future development and applications.
Collapse
Affiliation(s)
- Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133, Rome, Italy
| |
Collapse
|
29
|
Carestia AM, Ravelli D, Alexanian EJ. Reagent-dictated site selectivity in intermolecular aliphatic C-H functionalizations using nitrogen-centered radicals. Chem Sci 2018; 9:5360-5365. [PMID: 30009007 PMCID: PMC6009468 DOI: 10.1039/c8sc01756e] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/12/2018] [Indexed: 12/12/2022] Open
Abstract
The site selectivities of intermolecular, aliphatic C-H bond functionalizations are central to the value of these transformations. While the scope of these reactions continues to expand, the site selectivities remain largely dictated by the inherent reactivity of the substrate C-H bonds. Herein, we introduce reagent-dictated site selectivity to intermolecular aliphatic C-H functionalizations using nitrogen-centered amidyl radicals. Simple modifications of the amide lead to high levels of site selectivity in intermolecular C-H functionalizations across a range of simple and complex substrates. DFT calculations demonstrate that the steric demand of the reacting nitrogen-centered radical is heavily affected by the substitution pattern of the starting amide. Optimization of transition state structures consistently indicated higher reagent-dictated steric selectivities using more hindered amides, consistent with experimental results.
Collapse
Affiliation(s)
- Anthony M Carestia
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| | - Davide Ravelli
- PhotoGreen Lab , Department of Chemistry , University of Pavia , Viale Taramelli 12 , 27100 Pavia , Italy .
| | - Erik J Alexanian
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| |
Collapse
|
30
|
Salamone M, Ortega VB, Martin T, Bietti M. Hydrogen Atom Transfer from Alkanols and Alkanediols to the Cumyloxyl Radical: Kinetic Evaluation of the Contribution of α-C-H Activation and β-C-H Deactivation. J Org Chem 2018; 83:5539-5545. [PMID: 29668277 DOI: 10.1021/acs.joc.8b00562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A kinetic study on the reactions of the cumyloxyl radical (CumO•) with a series of alkanols and alkanediols has been carried out. Predominant hydrogen atom transfer (HAT) from the α-C-H bonds of these substrates, activated by the presence of the OH group, is observed. The comparable kH values measured for ethanol and 1-propanol and the increase in kH measured upon going from 1,2-diols to structurally related 1,3- and 1,4-diols is indicative of β-C-H deactivation toward HAT to the electrophilic CumO•, determined by the electron-withdrawing character of the OH group. No analogous deactivation is observed for the corresponding diamines, in agreement with the weaker electron-withdrawing character of the NH2 group. The significantly lower kH values measured for reaction of CumO• with densely oxygenated methyl pyranosides as compared to cyclohexanol derivatives highlights the role of β-C-H deactivation. The contribution of torsional effects on reactivity is evidenced by the ∼2-fold increase in kH observed upon going from the trans isomers of 4- tert-butylcyclohexanol and 1,2- and 1,4-cyclohexanediol to the corresponding cis isomers. These results provide an evaluation of the role of electronic and torsional effects on HAT reactions from alcohols and diols to CumO•, uncovering moreover β-C-H deactivation as a relevant contributor in defining site selectivity.
Collapse
Affiliation(s)
- Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche , Università "Tor Vergata" , Via della Ricerca Scientifica 1 , I-00133 Rome , Italy
| | - Vanesa B Ortega
- Dipartimento di Scienze e Tecnologie Chimiche , Università "Tor Vergata" , Via della Ricerca Scientifica 1 , I-00133 Rome , Italy
| | - Teo Martin
- Dipartimento di Scienze e Tecnologie Chimiche , Università "Tor Vergata" , Via della Ricerca Scientifica 1 , I-00133 Rome , Italy
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche , Università "Tor Vergata" , Via della Ricerca Scientifica 1 , I-00133 Rome , Italy
| |
Collapse
|
31
|
Laudadio G, Govaerts S, Wang Y, Ravelli D, Koolman HF, Fagnoni M, Djuric SW, Noël T. Selective C(sp 3 )-H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angew Chem Int Ed Engl 2018; 57:4078-4082. [PMID: 29451725 PMCID: PMC5900731 DOI: 10.1002/anie.201800818] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 11/09/2022]
Abstract
A mild and selective C(sp3 )-H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both activated and unactivated C-H bonds (30 examples). The ability to selectively oxidize natural scaffolds, such as (-)-ambroxide, pregnenolone acetate, (+)-sclareolide, and artemisinin, exemplifies the utility of this new method.
Collapse
Affiliation(s)
- Gabriele Laudadio
- Department of Chemical Engineering and ChemistryMicro Flow Chemistry and Process TechnologyEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Sebastian Govaerts
- Department of Chemical Engineering and ChemistryMicro Flow Chemistry and Process TechnologyEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Ying Wang
- Discovery Chemistry and TechnologiesAbbVie Inc.1 North Waukegan RoadNorth ChicagoIllinois60064USA
| | - Davide Ravelli
- PhotoGreen LabDepartment of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| | - Hannes F. Koolman
- Discovery Chemistry and TechnologiesAbbVie Inc.1 North Waukegan RoadNorth ChicagoIllinois60064USA
- Current affiliation: Medicinal ChemistryBoehringer Ingelheim Pharma GmbH & Co. KGBirkendorfer Strasse 6588397Biberach an der RissGermany
| | - Maurizio Fagnoni
- PhotoGreen LabDepartment of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| | - Stevan W. Djuric
- Discovery Chemistry and TechnologiesAbbVie Inc.1 North Waukegan RoadNorth ChicagoIllinois60064USA
| | - Timothy Noël
- Department of Chemical Engineering and ChemistryMicro Flow Chemistry and Process TechnologyEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| |
Collapse
|
32
|
Laudadio G, Govaerts S, Wang Y, Ravelli D, Koolman HF, Fagnoni M, Djuric SW, Noël T. Selective C(sp3
)−H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800818] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gabriele Laudadio
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Sebastian Govaerts
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Ying Wang
- Discovery Chemistry and Technologies; AbbVie Inc.; 1 North Waukegan Road North Chicago Illinois 60064 USA
| | - Davide Ravelli
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Hannes F. Koolman
- Discovery Chemistry and Technologies; AbbVie Inc.; 1 North Waukegan Road North Chicago Illinois 60064 USA
- Current affiliation: Medicinal Chemistry; Boehringer Ingelheim Pharma GmbH & Co. KG; Birkendorfer Strasse 65 88397 Biberach an der Riss Germany
| | - Maurizio Fagnoni
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Stevan W. Djuric
- Discovery Chemistry and Technologies; AbbVie Inc.; 1 North Waukegan Road North Chicago Illinois 60064 USA
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| |
Collapse
|
33
|
Fukuyama T, Yamada K, Nishikawa T, Ravelli D, Fagnoni M, Ryu I. Site-selectivity in TBADT-photocatalyzed C(sp3)–H Functionalization of Saturated Alcohols and Alkanes. CHEM LETT 2018. [DOI: 10.1246/cl.171068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Keiichi Yamada
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Tomohiro Nishikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Davide Ravelli
- Photo Green Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- Photo Green Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Illhyong Ryu
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
34
|
Pipitone LM, Carboni G, Sorrentino D, Galeotti M, Salamone M, Bietti M. Enhancing Reactivity and Site-Selectivity in Hydrogen Atom Transfer from Amino Acid C–H Bonds via Deprotonation. Org Lett 2018; 20:808-811. [DOI: 10.1021/acs.orglett.7b03948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luca Maria Pipitone
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Giulia Carboni
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Daniela Sorrentino
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Massimo Bietti
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| |
Collapse
|
35
|
Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. Site-Selective C–H Functionalization by Decatungstate Anion Photocatalysis: Synergistic Control by Polar and Steric Effects Expands the Reaction Scope. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03354] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Davide Ravelli
- PhotoGreen
Lab, Department of Chemistry, University of Pavia, Viale Taramelli
12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University of Pavia, Viale Taramelli
12, 27100 Pavia, Italy
| | - Takahide Fukuyama
- Department
of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Tomohiro Nishikawa
- Department
of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ilhyong Ryu
- Department
of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Department
of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
36
|
Salamone M, Martin T, Milan M, Costas M, Bietti M. Electronic and Torsional Effects on Hydrogen Atom Transfer from Aliphatic C–H Bonds: A Kinetic Evaluation via Reaction with the Cumyloxyl Radical. J Org Chem 2017; 82:13542-13549. [DOI: 10.1021/acs.joc.7b02654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michela Salamone
- Dipartimento
di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Teo Martin
- Dipartimento
di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Michela Milan
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Miquel Costas
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| |
Collapse
|
37
|
Fukuyama T, Nishikawa T, Yamada K, Ravelli D, Fagnoni M, Ryu I. Photocatalyzed Site-Selective C(sp 3)-H Functionalization of Alkylpyridines at Non-Benzylic Positions. Org Lett 2017; 19:6436-6439. [PMID: 29154551 DOI: 10.1021/acs.orglett.7b03339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tetrabutylammonium decatungstate (TBADT)-photocatalyzed C-H functionalization of alkylpyridines was investigated. Unlike alkylbenzene counterparts, alkylation of α-C-H bonds did not proceed for the reaction of 2- and 4-alkylpyridines and reluctantly proceeded for 3-alkylpyridines, which allow site-selective C(sp3)-H functionalization at nonbenzylic positions. The observed nonbenzylic site selectivities are rationalized by the polar inductive effects of pyridyl groups in the SH2 transition states. Consecutive γ-functionalization and α-bromofunctionalization were successfully carried out in selected cases.
Collapse
Affiliation(s)
- Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University , Sakai, Osaka, 599-8531, Japan
| | - Tomohiro Nishikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University , Sakai, Osaka, 599-8531, Japan
| | - Keiichi Yamada
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University , Sakai, Osaka, 599-8531, Japan
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| | - Ilhyong Ryu
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University , Sakai, Osaka, 599-8531, Japan.,Department of Applied Chemistry, National Chiao Tung University , Hsinchu, Taiwan
| |
Collapse
|