1
|
Lu W, Wu Y, Ma YN, Chen F, Chen X. A Method for Highly Selective Halogenation of o-Carboranes and m-Carboranes. Inorg Chem 2023; 62:885-892. [PMID: 36584667 DOI: 10.1021/acs.inorgchem.2c03694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A facile halogenation method for highly selective synthesis of 9-X-o-carboranes, 9,12-X2-o-carboranes, 9-X-12-X'-o-carboranes, 9-X-m-carboranes, 9,10-X2-m-carboranes, and 9-X-10-X'-m-carboranes (X, X' = Cl, Br, I) has been developed on the basis of our previous work. The success of this transformation relies on the usage of trifluoromethanesulfonic acid (HOTf), the easily available strong Brønsted acid. The addition of HOTf greatly increases the electrophilicity of N-haloamides through hydrogen bonding interaction, resulting in the low loading of N-haloamides, short reaction time, and mild reaction conditions. Additionally, the solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is also essential to further increase the acidity of HOTf.
Collapse
Affiliation(s)
- Wen Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yanxuan Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
2
|
Jia H, Qiu Z. Recent Advances in Transition Metal-Catalyzed B—H Bond Activation for Synthesis of o-Carborane Derivatives with B—Heteroatom Bond. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
3
|
Guo W, Guo C, Ma YN, Chen X. Practical Synthesis of B(9)-Halogenated Carboranes with N-Haloamides in Hexafluoroisopropanol. Inorg Chem 2022; 61:5326-5334. [PMID: 35311288 DOI: 10.1021/acs.inorgchem.2c00074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The B(9)-H halogenation of o-carborane and m-carborane was achieved with excellent selectivities in hexafluoroisopropanol (HFIP) under simple reaction conditions: single reagent [trichloroisocyanuric acid (TCCA), tribromoisocyanuric acid (TBCA) or N-iodosuccinimide (NIS)], catalyst-free, air-/moisture-tolerant, and convenient work-up. With this method, a variety of 9-halogenated o-carboranes and m-carboranes were obtained in good to excellent yields with broad tolerance of functional groups.
Collapse
Affiliation(s)
- Wenjing Guo
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Na Ma
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Abstract
Synthesis, NMR spectral data and crystal structure of 9,12-dibromo derivative of ortho-carborane are reported.
Collapse
|
5
|
Zhang J, Xie Z. Advances in transition metal catalyzed selective B H functionalization of o-carboranes. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Recent trends and tactics in facile functionalization of neutral icosahedral carboranes (C2B10H12) and nido-carborane (7,8-C2B9H12−). ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Liu J, Fu D, Chen Z, Li T, Qu LB, Li SJ, Zhang W, Lan Y. Regioselectivity of Pd-catalyzed o-carborane arylation: a theoretical view. Org Chem Front 2022. [DOI: 10.1039/d2qo00046f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
B(3)-Arylation is unfavorable because the steric repulsion between the substituent group on C(2) and the metal moiety would lead to significant distortion of o-carborane and would result in a higher activation energy for reductive elimination.
Collapse
Affiliation(s)
- Jiying Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongmin Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zitong Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tiantian Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| |
Collapse
|
8
|
Abstract
Carboranes are a class of polyhedral carbon-boron molecular clusters featuring three-dimensional aromaticity, which are often considered as 3D analogues of benzene. Their unique structural and electronic properties make them invaluable building blocks for applications ranging from functional materials to versatile ligands to pharmaceuticals. Thus, selective functionalization of carboranes has received tremendous research interest. In earlier days, the vast majority of the works in this area were focused on cage carbon functionalization via facile deprotonation of cage CH, followed by reaction with electrophiles. On the contrary, cage B-H activation is very challenging since the 10 B-H bonds on o-carborane are very similar, and how to achieve the desired transformation at specific boron vertex is a long-standing issue.As carbon is considered more electronegative than boron, this property results in different vertex charges on the o-carborane cage, which follow the order B(3,6)-H ≪ B(4,5,7,11)-H < B(8,10)-H < B(9,12)-H. We thought that this difference may trigger the favorite interaction of a proper transition metal complex with a specific B-H bond of carborane, which could be utilized to solve the selectivity issue. Accordingly, our strategy is described as follows: (1) electron-rich transition metal catalysts are good for the activation of the most electron-deficient B(3,6)-H bonds (connected to both cage C-H vertices); (2) electron-deficient transition metal catalysts are good for the activation of the relatively electron-rich B(8,9,10,12)-H bonds (with no bonding to either cage C-H vertices); and (3) directing-group-assisted transition metal catalysis is appropriate for the activation of the B(4,5,7,11)-H bonds (connected to only one cage C-H vertex), whose vertex charges lie in the middle of the range for the 10 B-H bonds. This strategy has been successfully applied by our laboratory and other groups in the development of a series of synthetic routes for catalytic selective activation of B-H bonds of the carborane cage, resulting in the synthesis of a large number of cage-boron-functionalized carborane derivatives in a regioselective and catalytic fashion. Subsequently, significant progress in this emerging area has been made.In 2013 we reported the selective tetrafluorination of o-carboranes at the B(8,9,10,12)-H bonds using an electron-deficient Pd(II) salt, [Pd(MeCN)4][BF4], as the catalyst. In 2014 we disclosed the first example of carboxy-directed alkenylation of o-carboranes at the B(4) vertex promoted by an Ir(III) catalyst. Subsequently, in 2017 we presented an electron-rich Ir(I)-catalyzed diborylation of o-carboranes at the B(3,6)-H bonds. We also uncovered the first example of Pd-catalyzed asymmetric synthesis of chiral-at-cage o-carboranes in 2018. These proof-of-principle studies have greatly stimulated research activities in selective B-H activation of carboranes and boron clusters enabled by transition metal catalysts. We have so far developed a toolbox of synthetic methods for selective catalytic cage B-olefination, -arylation, -alkenylation, -alkynylation, -oxygenation, -sulfenylation, -borylation, -halogenation, and -amination. We have recently expanded our research to base metal catalysis. As the field progresses, we expect that other methods for regioselective cage B-H activation will be invented, and the results detailed in this Account will promote these efforts.
Collapse
Affiliation(s)
- Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
9
|
Sivaev IB. Functional Group Directed B–H Activation of Polyhedral Boron Hydrides by Transition Metal Complexes (Review). RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621090151] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ge Y, Qiu Z, Xie Z. Pd-catalyzed selective tetrafunctionalization of diiodo- o-carboranes. Chem Commun (Camb) 2021; 57:8071-8074. [PMID: 34296721 DOI: 10.1039/d1cc03449a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A palladium-catalyzed highly selective tetrafunctionalization of 3,6-I2-o-carborane and 4,7-I2-o-carborane has been developed, leading to the preparation of 3,6-dialkenyl-4,11-R2-o-carboranes and 4,7-dialkenyl-5,11-R2-o-carboranes (R = alkyl, allyl and aryl) in moderate to excellent yields. This represents a new strategy for selective synthesis of polyfunctionalized o-carborane derivatives via a one-pot process.
Collapse
Affiliation(s)
- Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China.
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China. and CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China. and Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
11
|
Au YK, Xie Z. Recent Advances in Transition Metal-Catalyzed Selective B-H Functionalization ofo-Carboranes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200366] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| |
Collapse
|
12
|
Baek Y, Cheong K, Kim D, Lee PH. Selective B(5,8,9)-Triarylation Reaction of o-Carboranes through Determination of the Order of Introduction of Aryl Groups into B(4)-Acylamino- o-carboranes. Org Lett 2021; 23:1188-1193. [PMID: 33538604 DOI: 10.1021/acs.orglett.0c04086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Palladium-catalyzed iterative cage B-H arylation reaction of a wide range of B(4)-acylamino-o-carboranes with aryl iodides has been developed, leading to the formation of B(5,8,9)-triarylated B(4)-acylamino-o-carboranes with excellent regioselectivity. Moreover, B(5,8,9)-triarylated carboranes bearing three different aryl groups were synthesized from B(4)-acylamino-o-carborane and three different aryl iodides. The order of introduction [B(9) > B(8) > B(5)] of aryl groups into the B(5,8,9)-triarylation reaction was determined for the first time through NMR monitoring and X-ray analyses.
Collapse
Affiliation(s)
- Yonghyeon Baek
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kiun Cheong
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- The Korean Academy of Science and Technology, Seongnam 13630, Republic of Korea.,Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
13
|
Lian L, Yin J, Lin C, Ye K, Yuan Y. Phosphine Oxide-Directed Palladium-Catalyzed Heck-Type Functionalization of o-Carboranes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Ge Y, Zhang J, Qiu Z, Xie Z. Pd-Catalyzed sequential B(3)–I/B(4)–H bond activation for the synthesis of 3,4-benzo-o-carboranes. Dalton Trans 2021; 50:1766-1773. [DOI: 10.1039/d0dt03740k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd-catalyzed sequential B(3)–I and B(4)–H bond activation was developed for the synthesis of 3,4-benzo-o-carboranes via a formal [2 + 2 + 2] cycloaddition.
Collapse
Affiliation(s)
- Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- Shatin, N. T
- China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
15
|
Au YK, Quan Y, Xie Z. Palladium‐Catalyzed Carbonylative Annulation of 1‐Hydroxy‐
o
‐Carborane and Internal Alkynes via Regioselective B‐H Activation. Chem Asian J 2020; 15:2170-2173. [DOI: 10.1002/asia.202000642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/12/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| |
Collapse
|
16
|
Liang YF, Yang L, Jei BB, Kuniyil R, Ackermann L. Regioselective B(3,4)-H arylation of o-carboranes by weak amide coordination at room temperature. Chem Sci 2020; 11:10764-10769. [PMID: 34094330 PMCID: PMC8162305 DOI: 10.1039/d0sc01515f] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/03/2020] [Indexed: 01/17/2023] Open
Abstract
Palladium-catalyzed regioselective di- or mono-arylation of o-carboranes was achieved using weakly coordinating amides at room temperature. Therefore, a series of B(3,4)-diarylated and B(3)-monoarylated o-carboranes anchored with valuable functional groups were accessed for the first time. This strategy provided an efficient approach for the selective activation of B(3,4)-H bonds for regioselective functionalizations of o-carboranes.
Collapse
Affiliation(s)
- Yu-Feng Liang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| | - Long Yang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| |
Collapse
|
17
|
Zhang Z, Zhang X, Yuan J, Yue C, Meng S, Chen J, Yu G, Che C. Transition‐Metal‐Catalyzed Regioselective Functionalization of Monophosphino‐
o‐
Carboranes. Chemistry 2020; 26:5037-5050. [DOI: 10.1002/chem.201905647] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/28/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Zi‐Yang Zhang
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Xuepeng Zhang
- Laboratory of Computational and Drug DesignSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Jia Yuan
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Chang‐Duo Yue
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Sixuan Meng
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Jian Chen
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Guang‐Ao Yu
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry andDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
- HKU Shenzhen Institute of Research and Innovation Shenzhen, Guangdong 518057 P. R. China
| |
Collapse
|
18
|
Takahashi Y, Tsuji H, Kawatsura M. Nickel-Catalyzed Transformation of Alkene-Tethered Oxime Ethers to Nitriles by a Traceless Directing Group Strategy. J Org Chem 2020; 85:2654-2665. [PMID: 31876416 DOI: 10.1021/acs.joc.9b02705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nickel-catalyzed transformation of alkene-tethered oxime ethers to nitriles using a traceless directing group strategy has been developed. A series of alkene-tethered oxime ethers derived from benzaldehyde and cinnamyl aldehyde derivatives were converted into the corresponding benzonitriles and cinnamonitriles in 46-98% yields using the nickel catalyst system. Control experiments showed that the alkene group tethered to an oxygen atom on the oximes via one methylene unit plays a key role as a traceless directing group during the catalysis.
Collapse
Affiliation(s)
- Yoshiyuki Takahashi
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| |
Collapse
|
19
|
Ge Y, Zhang J, Qiu Z, Xie Z. Pd‐Catalyzed Selective Bifunctionalization of 3‐Iodo‐
o
‐Carborane by Pd Migration. Angew Chem Int Ed Engl 2020; 59:4851-4855. [DOI: 10.1002/anie.201914500] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/23/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong, Shatin, N. T. Hong Kong China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- CAS Key Laboratory of Energy Regulation MaterialsShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Rd Shanghai 200032 China
- Fujian Innovation AcademyChinese Academy of Sciences 155 Yangqiao Rd West Fuzhou 350002 China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong, Shatin, N. T. Hong Kong China
| |
Collapse
|
20
|
Ge Y, Zhang J, Qiu Z, Xie Z. Pd‐Catalyzed Selective Bifunctionalization of 3‐Iodo‐
o
‐Carborane by Pd Migration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong, Shatin, N. T. Hong Kong China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- CAS Key Laboratory of Energy Regulation MaterialsShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Rd Shanghai 200032 China
- Fujian Innovation AcademyChinese Academy of Sciences 155 Yangqiao Rd West Fuzhou 350002 China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong, Shatin, N. T. Hong Kong China
| |
Collapse
|
21
|
Synthesis of Polyhedral Borane Cluster Fused Heterocycles via Transition Metal Catalyzed B-H Activation. Molecules 2020; 25:molecules25020391. [PMID: 31963527 PMCID: PMC7024252 DOI: 10.3390/molecules25020391] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/16/2023] Open
Abstract
Aromatic heterocycles are ubiquitous building blocks in bioactive natural products, pharmaceutical and agrochemical industries. Accordingly, the carborane-fused heterocycles would be potential candidates in drug discovery, nanomaterials, metallacarboranes, as well as photoluminescent materials. In recent years, the transition metal catalyzed B-H activation has been proved to be an effective protocol for selective functionalization of B-H bond of o-carboranes, which has been further extended for the synthesis of polyhedral borane cluster-fused heterocycles via cascade B-H functionalization/annulation process. This article summarizes the recent progress in construction of polyhedral borane cluster-fused heterocycles via B-H activation.
Collapse
|
22
|
Cui CX, Zhang J, Qiu Z, Xie Z. Palladium-catalyzed intramolecular dehydrogenative coupling of BH and OH: synthesis of carborane-fused benzoxaboroles. Dalton Trans 2020; 49:1380-1383. [DOI: 10.1039/c9dt04553h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A Pd-catalyzed intramolecular dehydrogenative coupling of BH and OH for the construction of cage B–O bonds was developed to afford C,B-carborane-fused heterocycles.
Collapse
Affiliation(s)
- Chun-Xiao Cui
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
23
|
Zhang C, Wang Q, Tian S, Zhang J, Li J, Zhou L, Lu J. Palladium-catalyzed regioselective synthesis of B(4,5)- or B(4)-substituted o-carboranes containing α,β-unsaturated carbonyls. Org Biomol Chem 2020; 18:4723-4727. [DOI: 10.1039/d0ob00698j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
B(4,5)- or B(4)-Substituted o-carboranes containing α,β-unsaturated carbonyls are regioselectively synthesized through a Pd-catalyzed decarboxylation cross coupling reaction.
Collapse
Affiliation(s)
- Chuyi Zhang
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
| | - Qian Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
| | - Song Tian
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
| | - Jianwei Zhang
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
| | - Jiaoyi Li
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Department of Chemistry & Materials Science
- National Demonstration Center for Experimental Chemistry Education
- Northwest University
- Xi'an
| | - Jian Lu
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
| |
Collapse
|
24
|
Cao K, Zhang CY, Xu TT, Wu J, Ding LF, Jiang L, Yang J. Palladium catalyzed/counter ion tuned selective methylation of o-carboranes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Wang Q, Tian S, Zhang C, Li J, Wang Z, Du Y, Zhou L, Lu J. Rh-Catalyzed Regioselective Dialkylation of Cage B–H bonds in o-Carboranes: Oxidative Heck Reactions via an Enol Isomerization. Org Lett 2019; 21:8018-8021. [DOI: 10.1021/acs.orglett.9b03009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Song Tian
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Chuyi Zhang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Jiangwei Li
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Zhixuan Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Yongmei Du
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Jian Lu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| |
Collapse
|
26
|
Au YK, Lyu H, Quan Y, Xie Z. Catalytic Cascade Dehydrogenative Cross-Coupling of BH/CH and BH/NH: One-Pot Process to Carborano-Isoquinolinone. J Am Chem Soc 2019; 141:12855-12862. [PMID: 31306583 DOI: 10.1021/jacs.9b06204] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A proof-of-principle study of cascade dehydrogenative cross-coupling of carboranyl carboxylic acid with readily available benzamide has been achieved, resulting in the facile synthesis of previously inaccessible carborano-isoquinolinone derivatives in a simple one-pot process, in which two cage B-H, one aryl C-H, and one N-H bond were sequentially activated to construct efficiently new B-C and B-N bonds, respectively. Under suitable reaction conditions, such cascade cyclization can be stopped at the first B-H/C-H cross-coupling step to give a series of α-carboranyl benzamides, suggesting the preferential occurrence of B-C cross-coupling over that of B-N. The carboxylic acid directing group plays a key role in the B-C cross-coupling step, which is then removed through in situ decarboxylation. The CV results combined with control experiments indicate that high-valent Ir(V)-species may be involved in the reaction pathways, which is crucial for such cascade dehydrogenative cross-coupling reactions. The isolation and structural identification of a key intermediate, its controlled transformations, and deuterium labeling experiments support a new Ir-nitrene-mediated amination for B-H/N-H dehydrocoupling.
Collapse
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Hairong Lyu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| |
Collapse
|
27
|
Wu J, Cao K, Zhang CY, Xu TT, Ding LF, Li B, Yang J. Catalytic Oxidative Dehydrogenative Coupling of Cage B–H/B–H Bonds for Synthesis of Bis(o-carborane)s. Org Lett 2019; 21:5986-5989. [DOI: 10.1021/acs.orglett.9b02129] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ji Wu
- State Key Laboratory of Environment-Friendly Energy Materials and School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-Friendly Energy Materials and School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| | - Cai-Yan Zhang
- State Key Laboratory of Environment-Friendly Energy Materials and School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| | - Tao-Tao Xu
- State Key Laboratory of Environment-Friendly Energy Materials and School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| | - Li-Fang Ding
- State Key Laboratory of Environment-Friendly Energy Materials and School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| | - Bo Li
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-Friendly Energy Materials and School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| |
Collapse
|
28
|
Quan Y, Tang C, Xie Z. Nucleophilic substitution: a facile strategy for selective B-H functionalization of carboranes. Dalton Trans 2019; 48:7494-7498. [PMID: 31026000 DOI: 10.1039/c9dt01140d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vertex-specific functionalization of carboranes has received considerable research interest, due to the valuable application of carborane derivatives in medicine, coordination/organometallic chemistry and materials. In comparison with a protic cage C-H bond, cage B-H is hydridic and generally less polar, with a bond dissociation energy of ca. 108 kcal mol-1. These features make B-H activation quite different from that of the C-H bond. In addition, selectivity among ten very similar BH vertices in o-carborane is challenging yet crucial to the effective construction of carborane-based functional molecules. To address these issues, a brand new strategy of cage B-H nucleophilic substitution has recently been presented and developed for straightforward and regioselective cage B-H functionalization. The regioselectivity can be controlled by the electronic/steric properties of the cage carbon substituents. This Frontier article highlights the recent advancement in the nucleophilic cage B-H substitution of carboranes.
Collapse
Affiliation(s)
- Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | | | |
Collapse
|
29
|
Lyu H, Zhang J, Yang J, Quan Y, Xie Z. Catalytic Regioselective Cage B(8)–H Arylation of o-Carboranes via “Cage-Walking” Strategy. J Am Chem Soc 2019; 141:4219-4224. [DOI: 10.1021/jacs.9b00302] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hairong Lyu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Jingting Yang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
30
|
Dziedzic RM, Spokoyny AM. Metal-catalyzed cross-coupling chemistry with polyhedral boranes. Chem Commun (Camb) 2019; 55:430-442. [PMID: 30525176 PMCID: PMC6491218 DOI: 10.1039/c8cc08693a] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past several decades, metal-catalyzed cross-coupling has emerged as a very powerful strategy to functionalize carbon-based molecules. More recently, some of the cross-coupling methodologies have been adapted to inorganic compounds including boron-rich clusters. The development of this chemistry relies on the ability to synthesize halogenated boron-rich clusters which can serve as electrophilic cross-coupling partners with nucleophilic substrates in the presence of a metal catalyst. While the cross-coupling chemistry with boron-clusters is conceptually reminiscent of that of its hydrocarbon counterparts, several key aspects including the spheroidal bulk of clusters and the distinct nature of boron-halogen/boron-heteroatom bonds make this chemistry unique. The utility of metal-catalyzed cross-coupling can be extended to several classes of polyhedral boranes including neutral and anionic carboranes, metallaboranes, and carbon-free boranes. Importantly, cross-coupling enables a suite of boron-heteroatom (C, N, O, P, S) couplings to prepare boron cluster-based systems that can be used for ligand design, medicinal chemistry, and materials applications.
Collapse
Affiliation(s)
- Rafal M Dziedzic
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA.
| | | |
Collapse
|
31
|
Zhang CY, Cao K, Xu TT, Wu J, Jiang L, Yang J. A facile approach for the synthesis of nido-carborane fused oxazoles via one pot deboronation/cyclization of 9-amide-o-carboranes. Chem Commun (Camb) 2019; 55:830-833. [DOI: 10.1039/c8cc07728b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One pot deboronation/cyclization of 9-amide-o-carboranes for construction of nido-7,8-carborane fused oxazoles.
Collapse
Affiliation(s)
- Cai-Yan Zhang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Tao-Tao Xu
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Ji Wu
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Linhai Jiang
- Instrumental Analysis Center
- Shenzhen University (Xili Campus)
- P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| |
Collapse
|
32
|
Quan Y, Xie Z. Controlled functionalization of o-carborane via transition metal catalyzed B–H activation. Chem Soc Rev 2019; 48:3660-3673. [DOI: 10.1039/c9cs00169g] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes recent advances in transition metal catalyzed vertex-specific BH functionalization of o-carborane for controlled synthesis of its derivatives.
Collapse
Affiliation(s)
- Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- New Territories
- China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- New Territories
- China
| |
Collapse
|
33
|
|
34
|
Tang C, Zhang J, Zhang J, Xie Z. Regioselective Nucleophilic Alkylation/Arylation of B–H Bonds in o-Carboranes: An Alternative Method for Selective Cage Boron Functionalization. J Am Chem Soc 2018; 140:16423-16427. [DOI: 10.1021/jacs.8b10270] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cen Tang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jiji Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
35
|
Sun Y, Zhang J, Zhang Y, Liu J, van der Veen S, Duttwyler S. The closo-Dodecaborate Dianion Fused with Oxazoles Provides 3D Diboraheterocycles with Selective Antimicrobial Activity. Chemistry 2018; 24:10364-10371. [PMID: 29738073 DOI: 10.1002/chem.201801602] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/05/2018] [Indexed: 11/11/2022]
Abstract
The synthesis and application of icosahedral boron cluster compounds has been studied extensively since their discovery several decades ago; however, two aspects of their chemistry have received little attention: The possibility to form inorganic/organic fused boraheterocycles and their potential to act as antimicrobial agents. This work comprises the preparation of a class of 3D diborabenzoxazole analogues with the closo-dodecaborate in place of the benzene moiety. The presented synthetic procedures provide access to a wide range of diboraheterocycles under mild conditions. These 3D heterocycles exhibit strong and selective antimicrobial activity against Neisseria gonorrhoeae, a widespread bacterial pathogen that has shown increasing incidences of multidrug resistance and for which the development of new antimicrobial compounds is urgently needed.
Collapse
Affiliation(s)
- Yuji Sun
- Department of Chemistry, Zhejiang University, Hangzhou, P.R. China
| | - Jianglin Zhang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yuanbin Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, P.R. China
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, Hangzhou, P.R. China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, Collaborative Innovation Center for Diagnosis, and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Simon Duttwyler
- Department of Chemistry, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
36
|
Xu TT, Cao K, Wu J, Zhang CY, Yang J. Palladium-Catalyzed Selective Mono-/Tetraacetoxylation of o-Carboranes with Acetic Acid via Cross Dehydrogenative Coupling of Cage B–H/O–H Bonds. Inorg Chem 2018; 57:2925-2932. [DOI: 10.1021/acs.inorgchem.8b00038] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tao-Tao Xu
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Materials Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 0086-621010 Sichuan, People’s Republic of China
| | - Ke Cao
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Materials Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 0086-621010 Sichuan, People’s Republic of China
| | - Ji Wu
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Materials Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 0086-621010 Sichuan, People’s Republic of China
| | - Cai-Yan Zhang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Materials Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 0086-621010 Sichuan, People’s Republic of China
| | - Junxiao Yang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Materials Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 0086-621010 Sichuan, People’s Republic of China
| |
Collapse
|
37
|
Duttwyler S. Recent advances in B–H functionalization of icosahedral carboranes and boranes by transition metal catalysis. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-1202] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Significant progress in the functionalization of icosahedral boron clusters has been made in the past years, leading to an increasing number of applications in various fields of research. The direct conversion of B–H bonds to substituted vertices constitutes an attractive strategy to synthesize cage compounds with desired properties. In this report, recent advances in the transition metal-catalyzed B–H activation of neutral and anionic boron clusters are presented.
Collapse
Affiliation(s)
- Simon Duttwyler
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , P.R. China
| |
Collapse
|
38
|
Quan Y, Qiu Z, Xie Z. Transition-Metal-Catalyzed Selective Cage B-H Functionalization of o-Carboranes. Chemistry 2018; 24:2795-2805. [PMID: 29148596 DOI: 10.1002/chem.201704937] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 01/14/2023]
Abstract
Carboranes are a class of carbon-boron molecular clusters with unusual thermal and chemical stabilities. They have been proved as very useful building blocks in supramolecular design, optoelectronics, nanomaterials, boron neutron capture therapy agents and organometallic/coordination chemistry. Thus, the functionalization of o-carboranes has received growing interests. Over the past decades, most of the works in this area have been focused on cage carbon functionalization as the weakly acidic cage C-H proton can be readily deprotonated by strong bases. In sharp contrast, selective cage B-H activation/functionalization among chemically very similar ten B-H vertices is very challenging. Considering the differences in electron density of ten cage B-H bonds in o-carborane and the nature of transition metal complexes, we have tackled this selectivity issue by means of organometallic chemistry. Our strategy is as follows: using electron-rich transition metal catalysts for the functionalization of the most electron-deficient B(3,6)-H vertices (bonded to both cage CH vertices); using electron-deficient transition-metal catalysts for the functionalization of relatively electron-rich B(8,9,10,12)-H vertices (with no bonding to both cage CH vertices); and using the combination of directing groups and electrophilic transition metal catalysts for the functionalization of B(4,5,7,11)-H vertices (bonded to only one cage CH vertex). Successful applications of such a strategy result in the preparation of a large variety of cage B-functionalized carboranes in a regioselective and catalytic manner, which are inaccessible by other means. It is believed that as this field progresses, other cage B-functionalized carboranes are expected to be synthesized, and the results detailed in this concept article will further these efforts.
Collapse
Affiliation(s)
- Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China.,Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
39
|
Bai H, Xu H, Zhang H, Guo Y, Shan J, Wei D, Zhu Y, Zhang S, Zhang W. Theoretical investigations of the Ir-catalyzed direct borylation of B(3,6)–H of o-carborane: the actual catalyst, mechanism, and origin of regioselectivity. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01322e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The IrIII species is proved to be the actual catalyst. The electron-delocalized structure and the inductive effects of the carbon centers is account for the regioselectivity.
Collapse
Affiliation(s)
- Huining Bai
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Hao Xu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Huimin Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yuen Guo
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Jiankai Shan
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yanyan Zhu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications
- Institute of Nanostructured Functional Materials
- Huanghe Science and Technology College
- Zhengzhou
- China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|
40
|
Xu TT, Cao K, Zhang CY, Wu J, Jiang L, Yang J. Palladium catalyzed selective arylation of o-carboranes via B(4)–H activation: amide induced regioselectivity reversal. Chem Commun (Camb) 2018; 54:13603-13606. [DOI: 10.1039/c8cc08193j] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amide induced regioselectivity reversal for selective B(4) arylation of o-carboranes.
Collapse
Affiliation(s)
- Tao-Tao Xu
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Cai-Yan Zhang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Ji Wu
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Linhai Jiang
- Instrumental Analysis Center
- Shenzhen University (Xili Campus)
- P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| |
Collapse
|
41
|
Liang X, Shen Y, Zhang K, Liu J, Duttwyler S. Rhodium(iii)-catalyzed dehydrogenative dialkenylation of the monocarba-closo-decaborate cluster by regioselective B–H activation. Chem Commun (Camb) 2018; 54:12451-12454. [DOI: 10.1039/c8cc05983g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The regioselective double B–H activation of the {CB9} carborane by rhodium catalysis is reported, affording novel inorganic–organic hybrid clusters.
Collapse
Affiliation(s)
- Xuewei Liang
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P. R. China
| | - Yunjun Shen
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P. R. China
| | - Kang Zhang
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P. R. China
| | - Jiyong Liu
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P. R. China
| | - Simon Duttwyler
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P. R. China
| |
Collapse
|