1
|
Sen N, Sarkar P, Meena Y, Tothadi S, Pati SK, Khan S. Synthesis and catalytic application of a donor-free bismuthenium cation. Chem Commun (Camb) 2024; 60:6877-6880. [PMID: 38873969 DOI: 10.1039/d4cc01805b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Herein, we report the synthesis and catalytic application of a new N,N'-dineopentyl-1,2-phenylenediamine-based bismuthenium cation (3). 3 has been synthesized via the treatment of chlorobismuthane LBiCl [L = 1,2-C6H4{N(CH2tBu)}2] (2) with AgSbF6, and was further used as a robust catalyst for the cyanosilylation of ketones under mild reaction conditions. Experimental studies and DFT calculations were performed to understand the mechanistic pathway.
Collapse
Affiliation(s)
- Nilanjana Sen
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Pallavi Sarkar
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Yadram Meena
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Srinu Tothadi
- CSIR-Central Salt and Marine Chemicals Research (AcSIR), Ghaziabad-201002, UP, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
2
|
Akhtar R, Gaurav K, Khan S. Applications of low-valent compounds with heavy group-14 elements. Chem Soc Rev 2024; 53:6150-6243. [PMID: 38757535 DOI: 10.1039/d4cs00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the last two decades, the low-valent compounds of group-14 elements have received significant attention in several fields of chemistry owing to their unique electronic properties. The low-valent group-14 species include tetrylenes, tetryliumylidene, tetrylones, dimetallenes and dimetallynes. These low-valent group-14 species have shown applications in various areas such as organic transformations (hydroboration, cyanosilylation, N-functionalisation of amines, and hydroamination), small molecule activation (e.g. P4, As4, CO2, CO, H2, alkene, and alkyne) and materials. This review presents an in-depth discussion on low-valent group-14 species-catalyzed reactions, including polymerization of rac-lactide, L-lactide, DL-lactide, and caprolactone, followed by their photophysical properties (phosphorescence and fluorescence), thin film deposition (atomic layer deposition and vapor phase deposition), and medicinal applications. This review concisely summarizes current developments of low-valent heavier group-14 compounds, covering synthetic methodologies, structural aspects, and their applications in various fields of chemistry. Finally, their opportunities and challenges are examined and emphasized.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kumar Gaurav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
3
|
Luo D, Liu CH, Chen YB, Wang ST, Fang WH, Zhang J. Stepwise and Controllable Synthesis of Mesoporous Heterotrimetallic Catalysts Based on Predesigned Al 4 Ln 4 Metallocycles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305833. [PMID: 37973555 PMCID: PMC10787057 DOI: 10.1002/advs.202305833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Indexed: 11/19/2023]
Abstract
The motivation for making heterometallic compounds stemmed from their emergent synergistic properties and enhanced capabilities for applications. However, the atomically precisely controlled synthesis of heterometallic compounds remains a daunting challenge of the complications that arise when applying several metals and linkers. Herein, a stepwise and controlled method is reported for the accurate addition of second and third metals to homometallic aluminum macrocycles based on the synergistic coordination and hard-soft acid-base theory. These heterometallic compounds showed a good Lewis acid catalytic effect, and the addition of hetero-metals significantly improved the catalytic effect and rate, among that the conversion rate of compound AlOC-133 reached 99.9% within half an hour. This method combines both the independent controllability of stepwise assembly with the universality of one-step methods. Based on the large family of clusters, the establishment of this method paves the way for the controllable and customized molecular-level synthesis of heterometallic materials and creates materials customized for preferential application.
Collapse
Affiliation(s)
- Dan Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Chen-Hui Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yi-Bo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
4
|
Sivaramakrishna A, Pete S, Mandar Mhaskar C, Ramann H, Venkata Ramanaiah D, Arbaaz M, Niyaz M, Janardan S, Suman P. Role of hypercoordinated silicon(IV) complexes in activation of carbon–silicon bonds: An overview on utility in synthetic chemistry. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Luo D, Xiao H, Zhang MY, Li SD, He L, Lv H, Li CS, Lin QP, Fang WH, Zhang J. Accurate binding of porous aluminum molecular ring catalysts with the substrate. Chem Sci 2023; 14:5396-5404. [PMID: 37234899 PMCID: PMC10208054 DOI: 10.1039/d3sc01260c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 05/28/2023] Open
Abstract
Metal molecular rings are a class of compounds with aesthetically pleasing symmetry and fundamentally useful properties. The reported work generally focuses on the ring center cavity, and there is little known about those on the ring waist. Herein, we report the discovery of porous aluminum molecular rings and their performance and contribution to the cyanosilylation reaction. We develop a facile ligand induced aggregation and solvent regulation strategy towards AlOC-58NC and AlOC-59NT with high purity, high yield (75% and 70%, respectively) and gram-level scale-up. These molecular rings exhibit a "two-tier" pore feature involving the general central cavity and newly observed equatorial semi-open cavities. AlOC-59NT with two types of one-dimensional channels showed good catalytic activity. The interaction of the aluminum molecular ring catalyst with the substrate has been crystallographically characterized and theoretically confirmed, showing a ring adaptability process that involves the capture and binding of the substrate. This work provides new ideas for the assembly of porous metal molecular rings and to understand the overall reaction pathway involving aldehydes and is expected to inspire the design of low-cost catalysts through structural modifications.
Collapse
Affiliation(s)
- Dan Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Min-Yi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Shang-Da Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Liang He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Hong Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Chun-Sen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Xiamen Fujian 361005 China
| | - Qi-Pu Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 350002 Fuzhou P. R. China
| |
Collapse
|
6
|
De S, Dutta S, Koley D. Theoretical Insights into Aluminum-Catalyzed Cyanosilylation of Aldehydes and Ketones. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sriman De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| |
Collapse
|
7
|
Kumar R, Sharma V, Jain S, Sharma H, Vanka K, Sen SS. A Well‐Defined Calcium Compound Catalyzes Trimerization of Arylisocyanates into 1,3,5‐Triarylisocyanurates. ChemCatChem 2022. [DOI: 10.1002/cctc.202101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rohit Kumar
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Vishal Sharma
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Inorganic chemistry and Catalysis INDIA
| | - Shailja Jain
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Physical and materials chemistry INDIA
| | - Himanshu Sharma
- CSIR-NCL: National Chemical Laboratory CSIR Physical and Materials Chemistry INDIA
| | - Kumar Vanka
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Physical and Material Chemistry INDIA
| | - Sakya S. Sen
- National Chemical Laboraotry Catalysis Division Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
8
|
Deka H, Fridman N, Eisen MS. A Sacrificial Iminato Ligand in the Catalytic Cyanosilylation of Ketones Promoted by Organoactinide Complexes. Inorg Chem 2022; 61:3598-3606. [PMID: 35170954 DOI: 10.1021/acs.inorgchem.1c03646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four new complexes containing the bis(pentamethylcyclopentadienyl)thorium(IV) moiety, Cp*2Th(L1)(Me) (Th2), Cp*2Th(L2)(Me) (Th3), Cp*2Th(L1)Cl (Th5), and Cp*2Th(L2)Cl (Th6), were synthesized in quantitative yields via the protonolysis reaction of the metallocene precursor complexes Cp*2Th(Me)2 (Th1) and Cp*2Th(Me)Cl (Th4) and the respective six- and seven-membered N-heterocyclic neutral imine ligands L1H and L2H. The molecular structures of all the complexes were established by single-crystal X-ray structure analyses. The synthesized complexes along with the precursor complexes were employed as catalysts for the cyanosilylation reaction of ketones with trimethylsilyl cyanide (Me3SiCN). The removal of the iminato ligand is necessary to trigger the reaction, allowing the formation of the active catalyst.
Collapse
Affiliation(s)
- Hemanta Deka
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa City 3200003, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa City 3200003, Israel
| | - Moris S Eisen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa City 3200003, Israel
| |
Collapse
|
9
|
Singh VK, Joshi PC, Kumar H, Siwatch RK, Jha CK, Nagendran S. Stannylene cyanide and its use as a cyanosilylation catalyst. Dalton Trans 2022; 51:16906-16914. [DOI: 10.1039/d2dt02721f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The usefulness of stannylene cyanide (ATISnCN (5); ATI = aminotroponiminate) as a catalyst for the cyanosilylation of aldehydes is demonstrated.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Prakash Chandra Joshi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rahul Kumar Siwatch
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chandan Kumar Jha
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Selvarajan Nagendran
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Wilson DWN, Jones DDL, Smith CD, Mehta M, Jones C, Goicoechea JM. Reduction of tert-butylphosphaalkyne and trimethylsilylnitrile with magnesium(I) dimers. Dalton Trans 2021; 51:898-903. [PMID: 34935022 DOI: 10.1039/d1dt03990c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report on the reactivity of magnesium(I) dimers, [Mg(nacnac)]2 (nacnac = HC[C(Me)N(2,6-iPr2C6H3)]2 ([DippLMg]2) and HC[C(Me)N(2,4,6-Me3C6H2)]2 ([MesLMg]2)), towards the phosphaalkyne tBuCP. The steric profile of the magnesium(I) dimer results in selectivity for different products. The larger diisopropylphenyl derivative yields exclusively the monomeric dimagnesiated phosphaalkene [DippLMg]PC(tBu)([DippLMg]) (1), while the mesityl derivative facilitates reductive coupling of two phosphaalkyne equivalents to give access to the 1,3-diphosphacyclobutadienediide [MesLMg]2[(tBu)2C2P2](2). The reactivity differs in coordinating solvents such as THF, which allowed for the observation of C-P coupled products. For sake of comparison, reactions of magnesium(I) compounds with Me3SiCN were carried out. In contrast to the reactions involving tBuCP, these afforded 1,3-diazabutadienediyl complexes via reductive coupling and silyl migration processes.
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, UK.
| | - Dafydd D L Jones
- School of Chemistry, Monash University, Wellington Rd, Clayton VIC 3800, Australia.
| | - Cory D Smith
- School of Chemistry, Monash University, Wellington Rd, Clayton VIC 3800, Australia.
| | - Meera Mehta
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Cameron Jones
- School of Chemistry, Monash University, Wellington Rd, Clayton VIC 3800, Australia.
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, UK.
| |
Collapse
|
11
|
Kang Z, Xu X, Wang Y, Zhang W, Zhou S, Zhu X, Xue M. n-Butyllithium as a highly efficient precatalyst for cyanosilylation of aldehydes and ketones. Org Biomol Chem 2021; 19:7432-7437. [PMID: 34397075 DOI: 10.1039/d1ob01297e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient cyanosilylation protocol mediated by the easily available n-BuLi with a wide range of aldehydes and ketones was developed. This protocol features excellent yields with very low n-BuLi loadings (0.01-0.05 mol%) at room temperature, solvent-free process, good chemo-/regio-selectivity and functional group tolerance and scalability. A possible reaction pathway based upon stoichiometric reactivity was put forward.
Collapse
Affiliation(s)
- Zihan Kang
- Key Laboratory of Organic Synthesis of Jiangsu province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Sato E, Fujii M, Tanaka H, Mitsudo K, Kondo M, Takizawa S, Sasai H, Washio T, Ishikawa K, Suga S. Application of an Electrochemical Microflow Reactor for Cyanosilylation: Machine Learning-Assisted Exploration of Suitable Reaction Conditions for Semi-Large-Scale Synthesis. J Org Chem 2021; 86:16035-16044. [PMID: 34355889 DOI: 10.1021/acs.joc.1c01242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanosilylation of carbonyl compounds provides protected cyanohydrins, which can be converted into many kinds of compounds such as amino alcohols, amides, esters, and carboxylic acids. In particular, the use of trimethylsilyl cyanide as the sole carbon source can avoid the need for more toxic inorganic cyanides. In this paper, we describe an electrochemically initiated cyanosilylation of carbonyl compounds and its application to a microflow reactor. Furthermore, to identify suitable reaction conditions, which reflect considerations beyond simply a high yield, we demonstrate machine learning-assisted optimization. Machine learning can be used to adjust the current and flow rate at the same time and identify the conditions needed to achieve the best productivity.
Collapse
Affiliation(s)
- Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mayu Fujii
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Tanaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masaru Kondo
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Shinobu Takizawa
- Department of Synthetic Organic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.,Artificial Intelligence Research Center, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- Department of Synthetic Organic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeshi Washio
- Artificial Intelligence Research Center, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.,Department of Reasoning for Intelligence, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazunori Ishikawa
- Department of Reasoning for Intelligence, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
13
|
Sarkar D, Dutta S, Weetman C, Schubert E, Koley D, Inoue S. Germyliumylidene: A Versatile Low Valent Group 14 Catalyst. Chemistry 2021; 27:13072-13078. [PMID: 34171132 PMCID: PMC8518661 DOI: 10.1002/chem.202102233] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Bis‐NHC stabilized germyliumylidenes [RGe(NHC)2]+ are typically Lewis basic (LB) in nature, owing to their lone pair and coordination of two NHCs to the vacant p‐orbitals of the germanium center. However, they can also show Lewis acidity (LA) via Ge−CNHC σ* orbital. Utilizing this unique electronic feature, we report the first example of bis‐NHC‐stabilized germyliumylidene [MesTerGe(NHC)2]Cl (1), (MesTer=2,6‐(2,4,6‐Me3C6H2)2C6H3; NHC= IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) catalyzed reduction of CO2 with amines and arylsilane, which proceeds via its Lewis basic nature. In contrast, the Lewis acid nature of 1 is utilized in the catalyzed hydroboration and cyanosilylation of carbonyls, thus highlighting the versatile ambiphilic nature of bis‐NHC stabilized germyliumylidenes.
Collapse
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.,Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Emeric Schubert
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
14
|
Peddarao T, Baishya A, Sarkar N, Acharya R, Nembenna S. Conjugated Bis‐Guanidines (CBGs) as
β
‐Diketimine Analogues: Synthesis, Characterization of CBGs/Their Lithium Salts and CBG Li Catalyzed Addition of B−H and TMSCN to Carbonyls. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Thota Peddarao
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Ashim Baishya
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Nabin Sarkar
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Rudresh Acharya
- School of Biological Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Sharanappa Nembenna
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| |
Collapse
|
15
|
Wang YX, Wang HM, Meng P, Song DX, Hou JJ, Zhang XM. An uncoordinated tertiary nitrogen based tricarboxylate calcium network with Lewis acid-base dual catalytic sites for cyanosilylation of aldehydes. Dalton Trans 2021; 50:1740-1745. [PMID: 33459307 DOI: 10.1039/d0dt03747h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and utilization of dual sites for synergistic catalysts has been recognised as an efficient method towards high-efficiency catalysis in the cyanosilylation of aldehydes, which gives key intermediates for the synthesis of a number of valuable natural and pharmaceutical compounds. However, most of the reported dual-site catalysts for this reaction were homogeneous, accompanied by potential deactivation through internal complexation of the dual sites. Herein, by the rational selection of an uncoordinated tertiary nitrogen based tricarboxylic ligand (tris[(4-carboxyl)-phenylduryl]amine, H3TCBPA), a new three-dimensional calcium-based metal-organic framework (MOF), Ca3(TCBPA)2(DMA)2(H2O)2 (1, where TCBPA = ionized tris[(4-carboxyl)-phenylduryl]amine and DMA = N,N-dimethylacetamide), possessing accessible dual catalytic sites, Lewis-basic N and Lewis-acidic Ca, has been designed and constructed by a one-pot solvothermal reaction. As expected, 1 is capable of dually and heterogeneously catalysing the cyanosilylation of aldehydes at room temperature, and can be reused for at least 6 runs with a maximum turnover number (TON) of 1301, which is superior to most reported cases. Additionally, 1 shows CO2 adsorption ability and conversion with epoxides, which is beneficial for the establishment of a sustainable society.
Collapse
Affiliation(s)
- Ying-Xia Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Hui-Min Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Pan Meng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Dong-Xia Song
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Juan-Juan Hou
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| |
Collapse
|
16
|
Pahar S, Kundu G, Sen SS. Cyanosilylation by Compounds with Main-Group Elements: An Odyssey. ACS OMEGA 2020; 5:25477-25484. [PMID: 33073074 PMCID: PMC7557257 DOI: 10.1021/acsomega.0c03293] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The past few decades have seen remarkable headways in the structural and reaction chemistry of compounds with heavier main-group elements. In recent years, there is an ongoing effort to derive catalytic chemistry involving main-group compounds, driven by their lower costs and higher terrestrial abundances. Here, a survey on the state-of-the-art in the development of cyanosilylation methodology by compounds with heavier main-group elements has been given. Once dominated by transition metals, the field has matured to embrace the majority of the main-group elements including aluminum, silicon, and calcium. Of particular focus will be how the mechanism of cyanosilylation involving compounds with main-group elements differs from those of transition metals.
Collapse
Affiliation(s)
- Sanjukta Pahar
- Inorganic
Chemistry and Catalysis Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gargi Kundu
- Inorganic
Chemistry and Catalysis Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sakya S. Sen
- Inorganic
Chemistry and Catalysis Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Rawat S, Bhandari M, Prashanth B, Singh S. Three Coordinated Organoaluminum Cation for Rapid and Selective Cyanosilylation of Carbonyls under Solvent‐Free Conditions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sandeep Rawat
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81 SAS Nagar Mohali 140306 Punjab India
| | - Mamta Bhandari
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81 SAS Nagar Mohali 140306 Punjab India
| | - Billa Prashanth
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81 SAS Nagar Mohali 140306 Punjab India
| | - Sanjay Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81 SAS Nagar Mohali 140306 Punjab India
| |
Collapse
|
18
|
Yang H, Shen Y, Xiao Z, Liu C, Yuan K, Ding Y. The direct trifluoromethylsilylation and cyanosilylation of aldehydes via an electrochemically induced intramolecular pathway. Chem Commun (Camb) 2020; 56:2435-2438. [DOI: 10.1039/c9cc08975f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trifluoromethylsilylation and cyanosilylation of aldehydes via the intramolecular cleavage of Si–CN and Si–CF3 bonds are developed based on electrochemically induced Si–O affinity.
Collapse
Affiliation(s)
- Hui Yang
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Yongli Shen
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Zihui Xiao
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Caiyan Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Kedong Yuan
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| |
Collapse
|
19
|
Samuilov AY, Alekbaev DR, Samuilov YD. Catalytic Metathesis of N-Methylformamide with Dimethyl Carbonate by Alcohol Associates. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419120240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
|
21
|
Bouaouli S, Spielmann K, Vrancken E, Campagne JM, Gérard H. Mechanism of Enolate Transfer between Si and Cu. Chemistry 2018; 24:6617-6624. [DOI: 10.1002/chem.201800099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Samira Bouaouli
- Sorbonne Université, CNRS; Laboratoire de Chimie Théorique, UMR 7616; 75005 Paris France
| | - Kim Spielmann
- Institut Charles Gerhardt; UMR 5253 CNRS-UM2-UM1-ENSCM 8; rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Emmanuel Vrancken
- Institut Charles Gerhardt; UMR 5253 CNRS-UM2-UM1-ENSCM 8; rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt; UMR 5253 CNRS-UM2-UM1-ENSCM 8; rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Hélène Gérard
- Sorbonne Université, CNRS; Laboratoire de Chimie Théorique, UMR 7616; 75005 Paris France
| |
Collapse
|
22
|
Bisai MK, Das T, Vanka K, Sen SS. Easily accessible lithium compound catalyzed mild and facile hydroboration and cyanosilylation of aldehydes and ketones. Chem Commun (Camb) 2018; 54:6843-6846. [DOI: 10.1039/c8cc02314j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Simple and readily accessible lithium compounds are found to be efficient single site catalysts for cyanosilylation and hydroboration of a range of aldehydes and ketones under ambient conditions.
Collapse
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Tamal Das
- Physical and Material Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Kumar Vanka
- Physical and Material Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
23
|
Wang W, Luo M, Li J, Pullarkat SA, Ma M. Low-valent magnesium(i)-catalyzed cyanosilylation of ketones. Chem Commun (Camb) 2018. [DOI: 10.1039/c8cc00826d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The magnesium(i) complex [(XylNacnac)Mg]2 was employed as a highly efficient catalyst for ketone cyanosilylation with TMSCN under mild conditions.
Collapse
Affiliation(s)
- Weifan Wang
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Man Luo
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Jia Li
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Sumod A. Pullarkat
- Division of Chemistry & Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Mengtao Ma
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|