1
|
Chang CY, Aponick A. Enantioselective Synthesis of Allylic Sulfones via Rhodium-Catalyzed Direct Hydrosulfonylation of Allenes and Alkynes. J Am Chem Soc 2024; 146:16996-17002. [PMID: 38875709 PMCID: PMC11927544 DOI: 10.1021/jacs.4c05629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
A highly regio- and enantioselective hydrosulfonylation using commercially available sodium sulfinates is reported, providing the first direct asymmetric rhodium-catalyzed hydrosulfonylation of allenes/alkynes to synthesize chiral allylic sulfones. Ligand screening studies demonstrated the indispensable role of the C1-symmetric P,N-ligand (Rax,S,S)-StackPhim for achieving both high regioselecitivity (>20:1) and enantioselectivity (up to 97% ee). Notably, the operationally simple method and mild conditions allow for the rapid preparation of chiral allylic sulfones with a wide scope of functional groups. Moreover, the use of sodium tert-butyldimethylsilyloxymethanesulfinate enables the collective synthesis of various chiral sulfone derivatives after simple transformations of the protected hydroxymethyl product.
Collapse
Affiliation(s)
- Chieh-Yu Chang
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Wen G, Feng X, Lin L. Water-enabling strategies for asymmetric catalysis. Org Biomol Chem 2024; 22:2510-2522. [PMID: 38450421 DOI: 10.1039/d3ob02122j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Water possesses unique advantages, including abundance, environmental friendliness and mild effects. Undoubtedly, it is an ideal solvent or reagent in chemical syntheses. Water also shows unique abilities in catalytic asymmetric synthesis. It can accelerate reaction rates, improve diastereo- or enantioselectivities, initiate reactions, diversify chemo, diastereo- or enantioselectivities through various effects (hydrophobic, hydrogen bonding, protonation). Several reviews have demonstrated the positive effects of water in asymmetric synthesis. In this review, we summarize water-enabling strategies in the last decade, and focus on advances which reveal how water affects a reaction.
Collapse
Affiliation(s)
- Gang Wen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
He HJ, Wang RQ, Wan LX, Zhou LY, Li HY, Li GB, Xiao YC, Chen FE. Organocatalytic Asymmetric Morita-Baylis-Hillman Reaction of Isatins with Vinyl Sulfones. J Org Chem 2023; 88:3802-3807. [PMID: 36822154 DOI: 10.1021/acs.joc.2c03073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The organocatalytic asymmetric Morita-Baylis-Hillman (MBH) reaction of isatin derivatives with various vinyl sulfones is disclosed. Chiral sulfone-containing 3-hydroxyoxindoles were produced in good to high yields and with good to high ee's. This report displays an unprecedented example to apply activated alkenes with sulfone moiety other than carbonyl groups in asymmetric MBH reactions and provides an efficient strategy to incorporate the sulfone functional group for the synthesis of chiral 3-hydroxyoxindoles.
Collapse
Affiliation(s)
- Hong-Jiao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rui-Qi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin-Xi Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li-Yan Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hong-Yan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fen-Er Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Recent applications of vinylethylene carbonates in Pd-catalyzed allylic substitution and annulation reactions: Synthesis of multifunctional allylic and cyclic structural motifs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Peng Y, Han C, Luo Y, Li G, Huo X, Zhang W. Nickel/Copper‐Cocatalyzed Asymmetric Benzylation of Aldimine Esters for the Enantioselective Synthesis of α‐Quaternary Amino Acids. Angew Chem Int Ed Engl 2022; 61:e202203448. [DOI: 10.1002/anie.202203448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Youbin Peng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chongyu Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- College of Chemistry Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
6
|
Asai K, Miura M, Hirano K. Palladium-Catalyzed Cross-Coupling Reaction of Diarylmethanol Derivatives with Diborylmethane. J Org Chem 2022; 87:7436-7445. [PMID: 35608528 DOI: 10.1021/acs.joc.2c00715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed cross-coupling reaction of diarylmethanol derivatives with diborylmethane has been developed. The reaction proceeds chemoselectively to deliver the corresponding homobenzylic boronates in good yields.
Collapse
Affiliation(s)
- Kento Asai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Catalytic asymmetric Tsuji-Trost α-benzylation reaction of N-unprotected amino acids and benzyl alcohol derivatives. Nat Commun 2022; 13:2509. [PMID: 35523802 PMCID: PMC9076619 DOI: 10.1038/s41467-022-30277-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/20/2022] [Indexed: 01/07/2023] Open
Abstract
Catalytic asymmetric Tsuji–Trost benzylation is a promising strategy for the preparation of chiral benzylic compounds. However, only a few such transformations with both good yields and enantioselectivities have been achieved since this reaction was first reported in 1992, and its use in current organic synthesis is restricted. In this work, we use N-unprotected amino acid esters as nucleophiles in reactions with benzyl alcohol derivatives. A ternary catalyst comprising a chiral aldehyde, a palladium species, and a Lewis acid is used to promote the reaction. Both mono- and polycyclic benzyl alcohols are excellent benzylation reagents. Various unnatural optically active α-benzyl amino acids are produced in good-to-excellent yields and with good-to-excellent enantioselectivities. This catalytic asymmetric method is used for the formal synthesis of two somatostatin mimetics and the proposed structure of natural product hypoestestatin 1. A mechanism that plausibly explains the stereoselective control is proposed. The catalytic asymmetric benzylations of prochiral nucleophiles are very limited. Here, the authors disclose an asymmetric α−benzylation of N-unprotected amino acids with benzyl alcohol derivatives by a chiral aldehyde-involved catalytic system.
Collapse
|
8
|
Peng Y, Han C, Luo Y, Li G, Huo X, Zhang W. Nickel/Copper‐Cocatalyzed Asymmetric Benzylation of Aldimine Esters for the Enantioselective Synthesis of α‐Quaternary Amino Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Youbin Peng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chongyu Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- College of Chemistry Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
9
|
Asai K, Hirano K, Miura M. Palladium‐Catalyzed Benzylic Silylation of Diarylmethyl Carbonates with Silylboranes under Base‐Free Conditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kento Asai
- Osaka University: Osaka Daigaku Department of Applied Chemistry JAPAN
| | - Koji Hirano
- Osaka University: Osaka Daigaku Department of Applied Chemistry JAPAN
| | - Masahiro Miura
- Faculty of Engineering, Osaka University Department of Applied Chemistry 2-1 Yamada-oka 565-0871 Suita JAPAN
| |
Collapse
|
10
|
Kanyiva KS, Uchida K, Shibata T. Silver-Catalyzed C(sp 3)-H Sulfonylation for the Synthesis of Benzyl Sulfones Using Toluene Derivatives and α-Amino Acid Sulfonamides. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyalo Stephen Kanyiva
- Global Center of Science and Engineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kanako Uchida
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
11
|
Trost BM, Zhu C, Ence CC. Pd-Catalyzed Regio-, Diastereo-, and Enantioselective [3 + 2] Cycloaddition Reactions: Access to Chiral Cyclopentyl Sulfones. Org Lett 2021; 23:2460-2464. [PMID: 33739110 DOI: 10.1021/acs.orglett.1c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The palladium-catalyzed [3 + 2] cycloaddition using in situ generated sulfone-TMM species to construct various chiral cyclopentyl sulfones in a highly regio-, diastereo- (dr >15:1), and enantioselective (up to 99% ee) manner is reported. The present strategy can tolerate different types of sulfone-TMM donors and acceptors, and enables the construction of three chiral centers in a single step, specifically with a chiral center bearing the sulfone moiety. The robust chiral diamidophosphite ligand is the key to the reactivity and selectivities of this transformation.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Chuanle Zhu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Chloe Christine Ence
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
12
|
Reddy RJ, Kumari AH. Synthesis and applications of sodium sulfinates (RSO 2Na): a powerful building block for the synthesis of organosulfur compounds. RSC Adv 2021; 11:9130-9221. [PMID: 35423435 PMCID: PMC8695481 DOI: 10.1039/d0ra09759d] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the preparation of sodium sulfinates (RSO2Na) and their multifaceted synthetic applications. Substantial progress has been made over the last decade in the utilization of sodium sulfinates emerging as sulfonylating, sulfenylating or sulfinylating reagents, depending on reaction conditions. Sodium sulfinates act as versatile building blocks for preparing many valuable organosulfur compounds through S-S, N-S, and C-S bond-forming reactions. Remarkable advancement has been made in synthesizing thiosulfonates, sulfonamides, sulfides, and sulfones, including vinyl sulfones, allyl sulfones, and β-keto sulfones. The significant achievement of developing sulfonyl radical-triggered ring-closing sulfonylation and multicomponent reactions is also thoroughly discussed. Of note, the most promising site-selective C-H sulfonylation, photoredox catalytic transformations and electrochemical synthesis of sodium sulfinates are also demonstrated. Holistically, this review provides a unique and comprehensive overview of sodium sulfinates, which summarizes 355 core references up to March 2020. The chemistry of sodium sulfinate salts is divided into several sections based on the classes of sulfur-containing compounds with some critical mechanistic insights that are also disclosed.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| |
Collapse
|
13
|
Zhu C, Cai Y, Jiang H. Recent advances for the synthesis of chiral sulfones with the sulfone moiety directly connected to the chiral center. Org Chem Front 2021. [DOI: 10.1039/d1qo00663k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recent development of strategies for the asymmetric synthesis of chiral sulfones with sulfone moieties directly connected to the stereocenters.
Collapse
Affiliation(s)
- Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Shee M, Singh NDP. Cooperative photoredox and palladium catalysis: recent advances in various functionalization reactions. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02071k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cooperative photoredox and palladium catalysis for various functionalization reactions.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
15
|
Asai K, Hirano K, Miura M. Divergent Synthesis of Isonitriles and Nitriles by Palladium-Catalyzed Benzylic Substitution with TMSCN. J Org Chem 2020; 85:12703-12714. [PMID: 32907327 DOI: 10.1021/acs.joc.0c01861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand-controlled palladium-catalyzed divergent synthesis of isonitriles and nitriles from benzylic carbonates and TMSCN has been developed. The BINAP- or DPEphos-ligated palladium catalyst selectively provides the corresponding benzylic isonitriles, whereas their regioisomers, benzylic nitriles, are formed exclusively under phosphine ligand-free conditions. Mechanistic studies reveal that isonitrile is the primary product under both conditions, but it is isomerized into nitrile in the absence of ancillary phosphine ligands.
Collapse
Affiliation(s)
- Kento Asai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Salman M, Xu Y, Khan S, Zhang J, Khan A. Regioselective molybdenum-catalyzed allylic substitution of tertiary allylic electrophiles: methodology development and applications. Chem Sci 2020; 11:5481-5486. [PMID: 34094074 PMCID: PMC8159339 DOI: 10.1039/d0sc01763a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The first molybdenum-catalyzed allylic sulfonylation of tertiary allylic electrophiles is described. The method employs a readily accessible catalyst (Mo(CO)6/2,2′-bipyridine, both are commercially available) and represents the first example of the use of a group 6 transition metal-catalyst for allylic sulfonylation of substituted tertiary allylic electrophiles to form carbon–sulfur bonds. This atom economic and operationally simple methodology is characterized by its relatively mild conditions, wide substrate scope, and excellent regioselectivity profile, thus unlocking a new platform to forge sulfone moieties, even in the context of late-stage functionalization and providing ample opportunities for further derivatization through traditional Suzuki cross-coupling reactions. The first general example of Mo-catalyzed allylic sulfonylation of tertiary allylic electrophile provides an efficient way to forge sulfone moieties, and providing ample opportunities for further transformation through traditional Suzuki cross-coupling.![]()
Collapse
Affiliation(s)
- Muhammad Salman
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yaoyao Xu
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Junjie Zhang
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Ajmal Khan
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| |
Collapse
|
17
|
Photoredox/palladium-cocatalyzed enantioselective alkylation of secondary benzyl carbonates with 4-alkyl-1,4-dihydropyridines. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9732-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Liu Z, Wang L, Yu T, Sun Y, Chen H, Gao W, Tang B. A bench-stable low-molecular-weight vinyl azide surrogate for a cascade reaction: facile access to novel N-vinyl-1,2,3-triazoles. Org Chem Front 2020. [DOI: 10.1039/d0qo00714e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel metal-catalyzed cascade reaction of stable low-molecular-weight vinyl azide surrogate with S-/O-nucleophiles and alkynes was disclosed in a general fashion, thus providing mild and efficient access to various N-vinyl-1,2,3-triazoles bearing new functional groups.
Collapse
Affiliation(s)
- Zhenhua Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Lianxiao Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Tian Yu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yanan Sun
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Huimin Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wen Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
19
|
Matsude A, Hirano K, Miura M. Palladium‐Catalyzed Intramolecular Mizoroki‐Heck‐Type Reaction of Diarylmethyl Carbonates. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Akihiro Matsude
- Department of Applied Chemistry, Graduate School of Engineering Osaka University, Suita Osaka 565-0871 Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering Osaka University, Suita Osaka 565-0871 Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering Osaka University, Suita Osaka 565-0871 Japan
| |
Collapse
|
20
|
Khan A, Zhao H, Zhang M, Khan S, Zhao D. Regio‐ and Enantioselective Synthesis of Sulfone‐Bearing Quaternary Carbon Stereocenters by Pd‐Catalyzed Allylic Substitution. Angew Chem Int Ed Engl 2019; 59:1340-1345. [DOI: 10.1002/anie.201910378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/07/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ajmal Khan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Meina Zhang
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
21
|
Khan A, Zhao H, Zhang M, Khan S, Zhao D. Regio‐ and Enantioselective Synthesis of Sulfone‐Bearing Quaternary Carbon Stereocenters by Pd‐Catalyzed Allylic Substitution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ajmal Khan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Meina Zhang
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
22
|
Yamamoto H, Nakata K. Diastereoconvergent Synthesis of Chiral Diarylmethyl Sulfones by Direct Sulfonylation of Diarylmethanols Diastereomixtures with Sodium Sulfinates Catalyzed by SnBr 2. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hiroshi Yamamoto
- Department of Chemistry; Graduate School of Natural Science and Technology; Shimane University; 1060 Nishikawatsu, Matsue 690-8504 Shimane Japan
| | - Kenya Nakata
- Department of Chemistry; Graduate School of Natural Science and Technology; Shimane University; 1060 Nishikawatsu, Matsue 690-8504 Shimane Japan
| |
Collapse
|
23
|
Pound SM, Watson MP. Asymmetric synthesis via stereospecific C-N and C-O bond activation of alkyl amine and alcohol derivatives. Chem Commun (Camb) 2018; 54:12286-12301. [PMID: 30283929 PMCID: PMC6261259 DOI: 10.1039/c8cc07093h] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This perspective showcases our development of benzylic and allylic amine and alcohol derivatives as electrophiles for stereospecific, nickel-catalyzed cross-coupling reactions, as well as the prior art that inspired our efforts. The success of our effort has relied on the use of benzyl ammonium triflates as electrophiles for cross-couplings via C-N bond activation and benzylic and allylic carboxylates for cross-couplings via C-O bond activation. Our work, along with others' exciting discoveries, has demonstrated the potential of stereospecific, nickel-catalyzed cross-couplings of alkyl electrophiles in asymmetric synthesis, and enables efficient generation of both tertiary and quaternary stereocenters.
Collapse
Affiliation(s)
- Sarah M Pound
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | | |
Collapse
|
24
|
Matsude A, Hirano K, Miura M. Palladium-Catalyzed Benzylic Phosphorylation of Diarylmethyl Carbonates. Org Lett 2018; 20:3553-3556. [PMID: 29798674 DOI: 10.1021/acs.orglett.8b01323] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed benzylic substitution of tert-butyl diarylmethyl carbonates with a pinacol-derived H-phosphonate proceeds to deliver the corresponding benzylic phosphorylated products in good yields. Moreover, the asymmetric synthesis is possible via a Pd/( Rp, R'p)-( S)-Mandyphos-catalyzed kinetic resolution-DYKAT (dynamic kinetic asymmetric transformation) sequence, and optically active α-chiral diarylmethylphosphonates are obtained with synthetically useful yields and enantiomeric ratios (up to 50% and 92:8 er).
Collapse
Affiliation(s)
- Akihiro Matsude
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| |
Collapse
|