1
|
Davis AR, Ozturk S, Seaton CC, Male L, Pike SJ. Controlling the Helical Pitch of Foldamers through Terminal Functionality: A Solid State Study. Chemistry 2024; 30:e202402892. [PMID: 39246096 DOI: 10.1002/chem.202402892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/10/2024]
Abstract
Developing new methods to control the size and shape of the helical structures adopted by foldamers is highly important as the secondary structure displayed by these supramolecular scaffolds often dictates their activity and function. Herein, we report on a systematic study demonstrating that the helical pitch of ortho-azobenzene/2,6-pyridyldicarboxamide foldamers can be readily controlled through the nature of the terminal functionality. Remarkably, simply through varying the end group of the foldamer, and without modifying any other structural features of the scaffold, the helical pitch can be over doubled in magnitude (from 3.4 Å-7.3 Å). Additionally, crystallographic analysis of a library ten foldamers has identified general trends in the influence of a range of terminal functionalities, including carboxylbenzyl (Cbz), diphenylcarbamyl (N(Ph)2), ferrocene (Fc) and tert-butyloxycarbonyl (Boc), in controlling the folding behaviour of these supramolecular scaffolds. These studies could prove useful in the future development of functional foldamers which adopt specific sizes and shapes.
Collapse
Affiliation(s)
- Alexander R Davis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sena Ozturk
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Colin C Seaton
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarah J Pike
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Doerner B, Della Sala F, Wang S, Webb SJ. Reaction, Recognition, Relay: Anhydride Hydrolysis Reported by Conformationally Responsive Fluorinated Foldamers in Micelles. Angew Chem Int Ed Engl 2024; 63:e202405924. [PMID: 38703400 DOI: 10.1002/anie.202405924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural membrane receptors are proteins that can report on changes in the concentration of external chemical messengers. Messenger binding to a receptor produces conformational changes that are relayed through the membrane into the cell; this information allows cells to adapt to changes in their environment. Artificial membrane receptors (R)-1 and (S)-1 are helical α-aminoisobutyric acid (Aib) foldamers that replicate key parts of this information relay. Solution-phase 19F NMR spectroscopy of zinc(II)-capped receptor 1, either in organic solvent or in membrane-mimetic micelles, showed messenger binding produced an enrichment of either left- or right-handed screw-sense; the chirality of the bound messenger was relayed to the other receptor terminus. Furthermore, in situ production of a chemical messenger in the external aqueous environment could be detected in real-time by a racemic mixture of receptor 1 in micelles. The hydrolysis of insoluble anhydrides produced carboxylate in the aqueous phase, which bound to the receptors and gave a distinct 19F NMR output from inside the hydrophobic region of the micelles.
Collapse
Affiliation(s)
- Benedicte Doerner
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Flavio Della Sala
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Siyuan Wang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
3
|
Picois N, Bodero L, Milbeo P, Brigaud T, Chaume G. Bimodal Use of Chiral α-Trifluoromethylalanine in Aib Foldamers: Study of the Position Impact Towards the Helical Screw-Sense Preference. Chemistry 2024; 30:e202400540. [PMID: 38445775 DOI: 10.1002/chem.202400540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Oligomers of the achiral α-aminoisobutyric acid (Aib) adopt a 310 helical conformation in which the screw-sense preference can be controlled by a single chiral residue. The use of the fluorinated residue α-Trifluoromethylalanine (α-TfmAla) revealed a unique way to both induce and measure the screw-sense preference of such oligomers acting as 19F NMR probe. This work proposes a systematic study of the effect of this fluorinated chiral inducer on the helical screw-sense preference of poly-Aib oligomers. The impact of the position of the fluorinated residue into pentamers (N-terminal, central or C-terminal) as well as the nature of the C-terminal capping of the peptides was thoroughly studied in light of complete structural analysis. A deeper understanding of the fluorine effect was achieved confirming the unique ability of α-TfmAla as a helical screw-sense controller.
Collapse
Affiliation(s)
- Nathan Picois
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
| | - Lizeth Bodero
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
| | - Pierre Milbeo
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
| | - Thierry Brigaud
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
| | - Grégory Chaume
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
| |
Collapse
|
4
|
Tilly DP, McColl C, Hu M, Vitórica-Yrezábal IJ, Webb SJ. Enantioselective conjugate addition to nitroolefins catalysed by helical peptides with a single remote stereogenic centre. Org Biomol Chem 2023; 21:9562-9571. [PMID: 38009076 DOI: 10.1039/d3ob01594g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Two short pentapeptides rich in α-aminoisobutyric acid (Aib) residues have been shown to act as enantioselective organocatalysts for the conjugate addition of nucleophiles to nitroolefins. An L-alanine terminated peptide, (Aib)4(L-Ala)NHtBu, which has neither functionalised sidechains nor a highly designed reactive site, used an exposed N-terminal primary amine and the amide bonds of the backbone to mediate catalysis. Folding of this peptide into a 310 helical structure was observed by crystallography. Folding into a helix relays the conformational preference of the chiral alanine residue at the C-terminus to the primary amine at the N-terminus, 0.9 nm distant. The chiral environment and defined shape produced by the 310 helix brings the amine site into proximity to two exposed amide NHs. Reaction scope studies implied that the amine acts as a Brønsted base and the solvent-exposed NH groups of the helix, shown to weakly bind β-nitrostyrene, are needed to obtain an enantiomeric excess. Replacement of L-alanine with D-phenylalanine gave (Aib)4(D-Phe)NHtBu, a peptide that now catalysed the benchmark reaction with the opposite enantioselectivity. These studies show how achiral residues can play a key role in enantioselective catalysis by peptides through the promotion of folding.
Collapse
Affiliation(s)
- David P Tilly
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Catherine McColl
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Mingda Hu
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
5
|
Pike SJ, Telford R, Male L. Reversible conformational switching of a photo-responsive ortho-azobenzene/2,6-pyridyldicarboxamide heterofoldamer. Org Biomol Chem 2023; 21:7717-7723. [PMID: 37565617 DOI: 10.1039/d3ob01137b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
We report on a convenient synthetic route to rapidly access a new photo-responsive ortho-azobenzene/2,6-pyridyldicarboxamide heterofoldamer. The adoption of a stable helical conformation has been established for this scaffold in both the solid state and in solution using single crystal X-ray diffraction and circular dichroism (CD) spectroscopy respectively. Reversible control over the stimuli-driven structural re-ordering of the supramolecular scaffold, from a stable helical conformation under non-irradiative conditions, to a less well-ordered state under irradiative conditions, has been identified. The robust nature of the responsive, conformational, molecular switching behaviour has been determined using UV/Vis, 1H NMR and CD spectroscopy. Minimal loss in the efficiency of the stimuli-driven, structural re-ordering processes of the foldamer scaffold is observed, even upon multiple cyclic treatments with irradiative/non-irradiative conditions.
Collapse
Affiliation(s)
- Sarah J Pike
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Richard Telford
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Morris DTJ, Clayden J. Screw sense and screw sensibility: communicating information by conformational switching in helical oligomers. Chem Soc Rev 2023; 52:2480-2496. [PMID: 36928473 PMCID: PMC10068589 DOI: 10.1039/d2cs00982j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 03/18/2023]
Abstract
Biological systems have evolved a number of different strategies to communicate information on the molecular scale. Among these, the propagation of conformational change is among the most important, being the means by which G-protein coupled receptors (GPCRs) use extracellular signals to modulate intracellular processes, and the way that opsin proteins translate light signals into nerve impulses. The developing field of foldamer chemistry has allowed chemists to employ conformationally well-defined synthetic structures likewise to mediate information transfer, making use of mechanisms that are not found in biological contexts. In this review, we discuss the use of switchable screw-sense preference as a communication mechanism. We discuss the requirements for functional communication devices, and show how dynamic helical foldamers derived from the achiral monomers such as α-aminoisobutyric acid (Aib) and meso-cyclohexane-1,2-diamine fulfil them by communicating information in the form of switchable screw-sense preference. We describe the various stimuli that can be used to switch screw sense, and explore the way that propagation of the resulting conformational preference in a well-defined helical molecule allows screw sense to control chemical events remote from a source of information. We describe the operation of these conformational switches in the membrane phase, and outline the progress that has been made towards using conformational switching to communicate between the exterior and interior of a phospholipid vesicle.
Collapse
Affiliation(s)
- David T J Morris
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
7
|
Wang S, della Sala F, Cliff MJ, Whitehead GFS, Vitórica-Yrezábal IJ, Webb SJ. A Chiral 19F NMR Reporter of Foldamer Conformation in Bilayers. J Am Chem Soc 2022; 144:21648-21657. [PMID: 36379007 PMCID: PMC9716558 DOI: 10.1021/jacs.2c09103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Understanding and controlling peptide foldamer conformation in phospholipid bilayers is a key step toward their use as molecular information relays in membranes. To this end, a new 19F "reporter" tag has been developed and attached to dynamic peptide foldamers. The (R)-1-(trifluoromethyl)ethylamido ((R)-TFEA) reporter was attached to the C-terminus of α-amino-iso-butyric acid (Aib) foldamers. Crystallography confirmed that the foldamers adopted 310 helical conformations. Variable temperature (VT) NMR spectroscopy in organic solvents showed that the (R)-TFEA reporter had an intrinsic preference for P helicity, but the overall screw-sense was dominated by a chiral "controller" at the N-terminus. The 19F NMR chemical shift of the CF3 resonance was correlated with the ability of different N-terminal groups to induce either an M or a P helix in solution. In bilayers, a similar correlation was found. Solution 19F NMR spectroscopy on small unilamellar vesicle (SUV) suspensions containing the same family of (R)-TFEA-labeled foldamers showed broadened but resolvable 19F resonances, with each chemical shift mirroring their relative positions in organic solvents. These studies showed that foldamer conformational preferences are the same in phospholipid bilayers as in organic solvents and also revealed that phospholipid chirality has little influence on conformation.
Collapse
Affiliation(s)
- Siyuan Wang
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | - Flavio della Sala
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | - Matthew J. Cliff
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | | | | | - Simon J. Webb
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| |
Collapse
|
8
|
Tilly DP, Cullen W, Zhong H, Jamagne R, Vitórica-Yrezábal I, Webb SJ. α-Amino-iso-butyric acid foldamers terminated with rhodium(I) N-heterocyclic carbene catalysts. Chemistry 2021; 28:e202104293. [PMID: 34932229 PMCID: PMC9305545 DOI: 10.1002/chem.202104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 12/01/2022]
Abstract
To investigate how remotely induced changes in ligand folding might affect catalysis by organometallic complexes, dynamic α‐amino‐iso‐butyric acid (Aib) peptide foldamers bearing rhodium(I) N‐heterocyclic carbene (NHC) complexes have been synthesized and studied. X‐ray crystallography of a foldamer with an N‐terminal azide and a C‐terminal Rh(NHC)(Cl)(diene) complex showed a racemate with a chiral axis in the Rh(NHC) complex and a distorted 310 helical body. Replacing the azide with either one or two chiral L‐α‐methylvaline (L‐αMeVal) residues gave diastereoisomeric foldamers that each possessed point, helical and axial chirality. NMR spectroscopy revealed an unequal ratio of diastereoisomers for some foldamers, indicating that the chiral conformational preference of the N‐terminal residue(s) was relayed down the 1 nm helical body to the axially chiral Rh(NHC) complex. Although the remote chiral residue(s) did not affect the stereoselectivity of hydrosilylation reactions catalysed by these foldamers, these studies suggest a potential pathway towards remote conformational control of organometallic catalysts.
Collapse
Affiliation(s)
- David P Tilly
- The University of Manchester, Department of Chemistry, UNITED KINGDOM
| | - William Cullen
- The University of Manchester, Department of Chemistry, UNITED KINGDOM
| | - Heng Zhong
- The University of Manchester, Department of Chemistry, UNITED KINGDOM
| | - Romain Jamagne
- The University of Manchester, Department of Chemistry, UNITED KINGDOM
| | | | - Simon John Webb
- University of Manchester, School of Chemistry and MIB, 131 Princess St, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|
9
|
Bodero L, Guitot K, Lensen N, Lequin O, Brigaud T, Ongeri S, Chaume G. Introducing the Chiral Constrained α-Trifluoromethylalanine in Aib foldamers to Control, Quantify and Assign the Helical Screw-Sense. Chemistry 2021; 28:e202103887. [PMID: 34890083 DOI: 10.1002/chem.202103887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/11/2022]
Abstract
Oligomers of α-aminoisobutyric acid (Aib) are achiral peptides that adopt 3 10 helical structures with equal population of left- and right-handed conformers. Yet, the screw-sense preference of the helical chain may be controlled by a single chiral residue located at one terminus. 1 H and 19 F NMR, X-ray crystallography and circular dichroism studies on new Aib oligomers show that the incorporation of a chiral quaternary α-trifluoromethylalanine at their N -terminus induces a reversal of the screw-sense preference of the 3 10 -helix compared to that of a non-fluorinated analogue having an l-α-methyl valine residue. This work demonstrates that, among the many particular properties of introducing a trifluoromethyl group into foldamers, its stereo-electronic properties are of major interest to control the helical screw sense. Its use as an easy-to-handle 19 F NMR probe to reliably determine both the magnitude of the screw-sense preference and its sign assignment is also of remarkable interest.
Collapse
Affiliation(s)
| | | | | | - Olivier Lequin
- Sorbonne Université Campus Pierre et Marie Curie: Sorbonne Universite Campus Pierre et Marie Curie, chemistry, FRANCE
| | | | | | - Grégory Chaume
- CY Cergy Paris Universite, Chemistry, 5 mail Gay Lussac, 95000, Cergy-Pontoise, FRANCE
| |
Collapse
|
10
|
Lizio MG, Campana M, De Poli M, Jefferies DF, Cullen W, Andrushchenko V, Chmel NP, Bouř P, Khalid S, Clayden J, Blanch E, Rodger A, Webb SJ. Insight into the Mechanism of Action and Peptide-Membrane Interactions of Aib-Rich Peptides: Multitechnique Experimental and Theoretical Analysis. Chembiochem 2021; 22:1656-1667. [PMID: 33411956 PMCID: PMC8248331 DOI: 10.1002/cbic.202000834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/06/2021] [Indexed: 12/16/2022]
Abstract
The increase in resistant bacterial strains necessitates the identification of new antimicrobial molecules. Antimicrobial peptides (AMPs) are an attractive option because of evidence that bacteria cannot easily develop resistance to AMPs. The peptaibols, a class of naturally occurring AMPs, have shown particular promise as antimicrobial drugs, but their development has been hindered by their mechanism of action not being clearly understood. To explore how peptaibols might interact with membranes, circular dichroism, vibrational circular dichroism, linear dichroism, Raman spectroscopy, Raman optical activity, neutron reflectivity and molecular dynamics simulations have been used to study a small library of peptaibol mimics, the Aib-rich peptides. All the peptides studied quickly partitioned and oriented in membranes, and we found evidence of chiral interactions between the phospholipids and membrane-embedded peptides. The protocols presented in this paper open new ground by showing how chiro-optical spectroscopies can throw light on the mechanism of action of AMPs.
Collapse
Affiliation(s)
| | - Mario Campana
- ISIS Neutron and Muon SourceRutherford Appleton Laboratory Harwell DidcotOxfordOX11 0QXUK
| | - Matteo De Poli
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - William Cullen
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess St.ManchesterM1 7DNUK
| | - Valery Andrushchenko
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesFlemingovo náměstí 216610Prague 6Czech Republic
| | - Nikola P. Chmel
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Petr Bouř
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesFlemingovo náměstí 216610Prague 6Czech Republic
| | - Syma Khalid
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Jonathan Clayden
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Ewan Blanch
- School of ScienceRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | - Alison Rodger
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Department of Molecular SciencesMacquarie UniversitySydneyNSW 2109Australia
| | - Simon J. Webb
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess St.ManchesterM1 7DNUK
| |
Collapse
|
11
|
Gogoi A, Konwer S, Zhuo GY. Polarimetric Measurements of Surface Chirality Based on Linear and Nonlinear Light Scattering. Front Chem 2021; 8:611833. [PMID: 33644001 PMCID: PMC7902787 DOI: 10.3389/fchem.2020.611833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
A molecule, molecular aggregate, or protein that cannot be superimposed on its mirror image presents chirality. Most living systems are organized by chiral building blocks, such as amino acids, peptides, and carbohydrates, and any change in their molecular structure (i.e., handedness or helicity) alters the biochemical and pharmacological functions of the molecules, many of which take place at surfaces. Therefore, studying surface chirogenesis at the nanoscale is fundamentally important and derives various applications. For example, since proteins contain highly ordered secondary structures, the intrinsic chirality can be served as a signature to measure the dynamics of protein adsorption and protein conformational changes at biological surfaces. Furthermore, a better understanding of chiral recognition and separation at bio-nanointerfaces is helpful to standardize chiral drugs and monitor the synthesis of adsorbents with high precision. Thus, exploring the changes in surface chirality with polarized excitations would provide structural and biochemical information of the adsorbed molecules, which has led to the development of label-free and noninvasive measurement tools based on linear and nonlinear optical effects. In this review, the principles and selected applications of linear and nonlinear optical methods for quantifying surface chirality are introduced and compared, aiming to conceptualize new ideas to address critical issues in surface biochemistry.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, India
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Peters AD, Borsley S, Della Sala F, Cairns-Gibson DF, Leonidou M, Clayden J, Whitehead GFS, Vitórica-Yrezábal IJ, Takano E, Burthem J, Cockroft SL, Webb SJ. Switchable foldamer ion channels with antibacterial activity. Chem Sci 2020; 11:7023-7030. [PMID: 32953034 PMCID: PMC7481839 DOI: 10.1039/d0sc02393k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Synthetic ion channels may have applications in treating channelopathies and as new classes of antibiotics, particularly if ion flow through the channels can be controlled. Here we describe triazole-capped octameric α-aminoisobutyric acid (Aib) foldamers that "switch on" ion channel activity in phospholipid bilayers upon copper(ii) chloride addition; activity is "switched off" upon copper(ii) extraction. X-ray crystallography showed that CuCl2 complexation gave chloro-bridged foldamer dimers, with hydrogen bonds between dimers producing channels within the crystal structure. These interactions suggest a pathway for foldamer self-assembly into membrane ion channels. The copper(ii)-foldamer complexes showed antibacterial activity against B. megaterium strain DSM319 that was similar to the peptaibol antibiotic alamethicin, but with 90% lower hemolytic activity.
Collapse
Affiliation(s)
- Anna D Peters
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Stefan Borsley
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Flavio Della Sala
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Dominic F Cairns-Gibson
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Marios Leonidou
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK
| | - George F S Whitehead
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | | | - Eriko Takano
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - John Burthem
- Department of Haematology , Manchester Royal Infirmary , Manchester University NHS Foundation Trust , Manchester M13 9WL , UK
- Division of Cancer Sciences , School of Medical Sciences , University of Manchester , Manchester , UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Simon J Webb
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| |
Collapse
|
13
|
Palomo L, Rodríguez R, Medina S, Quiñoá E, Casado J, Freire F, Ramírez FJ. Raman Optical Activity (ROA) as a New Tool to Elucidate the Helical Structure of Poly(phenylacetylene)s. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Luis Palomo
- Departamento de Química Física Facultad de Ciencias Universidad de Málaga Campus de Teatinos Málaga 29071 Spain
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materials Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Samara Medina
- Departamento de Química Física Facultad de Ciencias Universidad de Málaga Campus de Teatinos Málaga 29071 Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materials Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Juan Casado
- Departamento de Química Física Facultad de Ciencias Universidad de Málaga Campus de Teatinos Málaga 29071 Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materials Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Francisco J. Ramírez
- Departamento de Química Física Facultad de Ciencias Universidad de Málaga Campus de Teatinos Málaga 29071 Spain
| |
Collapse
|
14
|
Palomo L, Rodríguez R, Medina S, Quiñoá E, Casado J, Freire F, Ramírez FJ. Raman Optical Activity (ROA) as a New Tool to Elucidate the Helical Structure of Poly(phenylacetylene)s. Angew Chem Int Ed Engl 2020; 59:9080-9087. [PMID: 32125060 DOI: 10.1002/anie.202000651] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Indexed: 02/02/2023]
Abstract
Poly(phenylacetylene)s are a family of helical polymers constituted by conjugated double bonds. Raman spectra of these polymers show a structural fingerprint of the polyene backbone which, in combination with its helical orientation, makes them good candidates to be studied by Raman optical activity (ROA). Four different well-known poly(phenylacetylene)s adopting different scaffolds and ten different helical senses have been prepared. Raman and ROA spectra were recorded and allowed to establish ROA-spectrum/helical-sense relationships: a left/right-handed orientation of the polyene backbone (Mhelix /Phelix ) produces a triplet of positive/negative ROA bands. Raman and ROA spectra of each polymer exhibited the same profile, and the sign of the ROA spectrum was opposite to the lowest-energy electronic circular dichroism (ECD) band, indicating a resonance effect. Resonance ROA appears then as an indicator of the helical sense of poly(phenylacetylene)s, especially for those with an extra Cotton band in the ECD spectrum, where a wrong helical sense is assigned based on ECD, while ROA alerts of this misassignment.
Collapse
Affiliation(s)
- Luis Palomo
- Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, 29071, Spain
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materials Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Samara Medina
- Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, 29071, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materials Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Juan Casado
- Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, 29071, Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materials Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Francisco J Ramírez
- Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, 29071, Spain
| |
Collapse
|
15
|
Rodríguez R, Suárez‐Picado E, Quiñoá E, Riguera R, Freire F. A Stimuli‐Responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Esteban Suárez‐Picado
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Ricardo Riguera
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
16
|
Rodríguez R, Suárez‐Picado E, Quiñoá E, Riguera R, Freire F. A Stimuli‐Responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers. Angew Chem Int Ed Engl 2020; 59:8616-8622. [DOI: 10.1002/anie.201915488] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/07/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Esteban Suárez‐Picado
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Ricardo Riguera
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
17
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
18
|
Marafon G, Moretto A, Zanuy D, Alemán C, Crisma M, Toniolo C. Effect on the Conformation of a Terminally Blocked, ( E) β,γ-Unsaturated δ-Amino Acid Residue Induced by Carbon Methylation. J Org Chem 2020; 85:1513-1524. [PMID: 31769989 DOI: 10.1021/acs.joc.9b02544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptides are well-known to play a fundamental therapeutic role and to represent building blocks for numerous useful biomaterials. Stabilizing their active 3D-structure by appropriate modifications remains, however, a challenge. In this study, we have expanded the available literature information on the conformational propensities of a promising backbone change of a terminally blocked δ-amino acid residue, a dipeptide mimic, by replacing its central amide moiety with an (E) Cβ═Cγ alkene unit. Specifically, we have examined by DFT calculations, X-ray diffraction in the crystalline state, and FT-IR absorption/NMR spectroscopies in solution the extended vs folded preferences of analogues of this prototype system either unmodified or possessing single or multiple methyl group substituents on each of its four -CH2-CH═CH-CH2- main-chain carbon atoms. The theoretical and experimental results obtained clearly point to the conclusion that increasing the number of adequately positioned methylations will enhance the preference of the original sequence to fold, thus opening interesting perspectives in the design of conformationally constrained peptidomimetics.
Collapse
Affiliation(s)
- Giulia Marafon
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy
| | - Alessandro Moretto
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy.,Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| | - David Zanuy
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering , Universitat Polytècnica de Catalunya , 08019 Barcelona , Spain
| | - Carlos Alemán
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering , Universitat Polytècnica de Catalunya , 08019 Barcelona , Spain.,Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona Spain
| | - Marco Crisma
- Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| | - Claudio Toniolo
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy.,Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| |
Collapse
|
19
|
Wang Y, Liu J, Zhao X, Yang C, Ozaki Y, Xu Z, Zhao B, Yu Z. A chiral signal-amplified sensor for enantioselective discrimination of amino acids based on charge transfer-induced SERS. Chem Commun (Camb) 2019; 55:9697-9700. [DOI: 10.1039/c9cc04665h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An ultra-high sensitivity enantioselective sensor with excellent discrimination performance for trace amino acids by using charge transfer-induced SERS.
Collapse
Affiliation(s)
- Yue Wang
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- People's Republic of China
| | - Jing Liu
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- People's Republic of China
| | - Xueqi Zhao
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- People's Republic of China
| | - Chunguang Yang
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- People's Republic of China
| | - Yukihiro Ozaki
- Department of Chemistry
- School of Science and Technology
- Kwansei Gakuin University
- Sanda
- Japan
| | - Zhangrun Xu
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- People's Republic of China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Zhi Yu
- The Guo China-US Photonics Laboratory
- Changchun Institute of Optics
- Fine Mechanics and Physics
- Changchun
- People's Republic of China
| |
Collapse
|
20
|
Lister FGA, Eccles N, Pike SJ, Brown RA, Whitehead GFS, Raftery J, Webb SJ, Clayden J. Bis-pyrene probes of foldamer conformation in solution and in phospholipid bilayers. Chem Sci 2018; 9:6860-6870. [PMID: 30310619 PMCID: PMC6114994 DOI: 10.1039/c8sc02532k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022] Open
Abstract
Exploring the detailed structural features of synthetic molecules in the membrane phase requires sensitive probes of conformation. Here we describe the design, synthesis and characterization of bis(pyrene) probes that report conformational changes in membrane-active dynamic foldamers. The probes were designed to distinguish between left-handed (M) and right-handed (P) screw-sense conformers of 310-helical α-aminoisobutyric acid (Aib) peptide foldamers, both in solution and in bilayer membranes. Several different bis(pyrene) probes were synthesized and ligated to the C-terminus of Aib tetramers that had different chiral residues at the N-terminus, residues that favored either an M or a P screw-sense in the 310-helix. The readily synthesized and conveniently incorporated N-acetyl-1,2-bis(pyren-1'-yl)ethylenediamine probe proved to have the best properties. In solution, changes in foldamer screw-sense induced substantial changes in the ratio of excimer/monomer fluorescence emission (E/M) for this reporter of conformation, with X-ray crystallography revealing that opposite screw-senses produce very different interpyrene distances in the reporter. In bilayers, this convenient and sensitive fluorescent reporter allowed, for the first time, an investigation of how the chirality of natural phospholipids affects foldamer conformation.
Collapse
Affiliation(s)
- Francis G A Lister
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - Natasha Eccles
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK . .,Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Sarah J Pike
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK . .,Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK.,Faculty of Life Sciences , University of Bradford , Bradford , West Yorkshire BD7 1DP , UK
| | - Robert A Brown
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - George F S Whitehead
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - James Raftery
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - Simon J Webb
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK . .,Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| |
Collapse
|