1
|
Singh S, Gambhir D, Singh RP. Photoinduced stereoselective reactions using pyridinium salts as radical precursors. Chem Commun (Camb) 2025; 61:3436-3446. [PMID: 39873307 DOI: 10.1039/d4cc06026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Pyridinium salts are amine surrogates that are abundant in nature and the redox active nature of the pyridinium salts allows them to serve as precursors for generating radical species under mild conditions that can be initiated by light, heat or metal catalysis. The stereoselective formation of products has always been a topic of interest for synthetic chemists worldwide. In this context, pyridinium salts can readily undergo single electron reduction to form a neutral radical, and the N-X bond's subsequent fragmentation furnishes the X radical without any harsh reaction conditions. As a consequence, the past decade has witnessed an increased effort in utilizing pyridinium salts to photocatalytically generate radicals for the regioselective, diastereoselective as well as enantioselective formation of products that have been summarised in this review.
Collapse
Affiliation(s)
- Shashank Singh
- Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
| | - Diksha Gambhir
- Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
| | - Ravi P Singh
- Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
| |
Collapse
|
2
|
Ehjeij D, Rominger F, Bunz UHF, Freudenberg J, Müllen K. Thermolysis of Biphenylene toward Cyclo-ortho-phenylenes. Angew Chem Int Ed Engl 2024; 63:e202312040. [PMID: 38084633 DOI: 10.1002/anie.202312040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Indexed: 01/13/2024]
Abstract
The solvent and catalyst free thermolysis of biphenylenes at 350 °C furnishes [n]cyclo-ortho-phenylenes ([n]COPs, n=4-10) in one step and in high yields. At 400 °C biphenylene dimerizes into tetraphenylene, but lower reaction temperatures produce cyclooligomers. If suitably substituted, the oligomers are soluble and can be isolated and characterized. The products are exclusively cyclic. In the crystalline state, [6]COP displays an alternating crown-shaped conformation.
Collapse
Affiliation(s)
- Daniel Ehjeij
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
3
|
Grabowski D, Alef S, Becker S, Müller U, Schnakenburg G, Höger S. Condensation of pyrylium salts with mixed anhydrides: aryl ethers, aryl amines and sterically congested aromatics. Org Chem Front 2022. [DOI: 10.1039/d1qo01419f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Condensation of 2,4,6-triaryl pyrylium salts with mixed anhydrides, formed in situ from α-functionalized sodium acetates and an anhydride solvent, leads in good yields to the corresponding 2,4,6-triaryl benzenes functionalized at their 1-position.
Collapse
Affiliation(s)
- Daniel Grabowski
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Susanne Alef
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Steven Becker
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Ute Müller
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
4
|
Nathusius M, Sleeman D, Pan J, Rominger F, Freudenberg J, Bunz UHF, Müllen K. Kinetic Stabilization of Blue-Emissive Anthracenes: Phenylene Bridging Works Best. Chemistry 2021; 27:16606-16610. [PMID: 34519387 PMCID: PMC9293334 DOI: 10.1002/chem.202103285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/12/2022]
Abstract
In attempts at kinetically stabilizing blue-emissive anthracenes, a series of 9,10-diaryl substituted derivatives were tested for their photochemical and photooxidative persistence. A major breakthrough in light fastness comes from a new bis-meta-terphenylyl substituted anthracene which is much superior to industrially relevant 9,10-biarylated anthracenes. The key issue is the steric shielding of the anthracene core. Further, intramolecular ring closure via Yamamoto coupling furnished a doubly bridged anthracene as a "self-encapsulated" sky-blue emitter which is most resistant to photodegradation. The improved stabilization was corroborated by time-resolved irradiation experiments and rationalized by X-ray crystallography.
Collapse
Affiliation(s)
- Marvin Nathusius
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- InnovationLabSpeyerer Str. 469115HeidelbergGermany
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Daniel Sleeman
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Junyou Pan
- Brilliant Optoelectronic Technology Co., Ltd.Yongda Rd. 148318020TaizhouZhejiangP. R. China
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Jan Freudenberg
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- InnovationLabSpeyerer Str. 469115HeidelbergGermany
| | - Uwe H. F. Bunz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
5
|
Kumar S, Tao Y. Coronenes, Benzocoronenes and Beyond: Modern Aspects of Their Syntheses, Properties, and Applications. Chem Asian J 2021; 16:621-647. [DOI: 10.1002/asia.202001465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Sushil Kumar
- Institute of Chemistry Academia Sinica Taipei 11529 Taiwan
| | - Yu‐Tai Tao
- Institute of Chemistry Academia Sinica Taipei 11529 Taiwan
| |
Collapse
|
6
|
Li Y, Wang H, Li X. Over one century after discovery: pyrylium salt chemistry emerging as a powerful approach for the construction of complex macrocycles and metallo-supramolecules. Chem Sci 2020; 11:12249-12268. [PMID: 34123226 PMCID: PMC8163312 DOI: 10.1039/d0sc04585c] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
Over one century after its discovery, pyrylium salt chemistry has been extensively applied in preparing light emitters, photocatalysts, and sensitizers. In most of these studies, pyrylium salts acted as versatile precursors for the preparation of small molecules (such as furan, pyridines, phosphines, pyridinium salts, thiopyryliums and betaine dyes) and poly(pyridinium salt)s. In recent decades, pyrylium salt chemistry has emerged as a powerful approach for constructing complex macrocycles and metallo-supramolecules. In this perspective, we attempt to summarize the representative efforts of synthesizing and self-assembling large, complex architectures using pyrylium salt chemistry. We believe that this perspective not only highlights the recent achievements in pyrylium salt chemistry, but also inspires us to revisit this chemistry to design and construct macrocycles and metallo-supramolecules with increasing complexity and desired function.
Collapse
Affiliation(s)
- Yiming Li
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 China
- Department of Chemistry, University of South Florida Tampa Florida 33620 USA
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 China
| |
Collapse
|
7
|
Reductive methylation of triphthaloylbenzene: Isolation and characterization of hexamethoxy-trinaphthylene and two unexpected trinaphthylene derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
He D, Xiao F, Wang Z, He A, Liu R, Jin G. Dynamic Hierarchical Self-Assemble Small Molecule Structure Hexabenzocoronene for the High-Performance Anodes Lithium Ion Storage. NANOSCALE RESEARCH LETTERS 2019; 14:65. [PMID: 30806834 PMCID: PMC6391511 DOI: 10.1186/s11671-019-2903-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
This study examined the characteristics of small molecular structure nano-graphene in a dynamic hierarchical self-assembly and found that graphene is rearranged under its own pressure during dynamic aggregation and water ripples are formed by the d-spacing. The composition and structure were studied using a range of material characterization techniques. No covalent bonds were observed between molecules, and the self-assembled driving force was the only intermolecular interaction: Van der Waals' force in the intra-layer and π-π interactions between layers. The arranged-rearranged structures provided a range of lithium ion shuttle channels, including the space between layers and diffusing through the nanosheets, which decrease the diffusion distance of lithium ions remarkably and reduce the irreversible capacity of the battery.
Collapse
Affiliation(s)
- Dawei He
- Affiliated Kunshan Hospital, Jiangsu University, Kunshan, 215300 People’s Republic of China
| | - Fuyan Xiao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | - Zhou Wang
- College of Vanadium and Titanium, Panzhihua University, Panzhihua, 617000 People’s Republic of China
| | - Aolin He
- Affiliated Kunshan Hospital, Jiangsu University, Kunshan, 215300 People’s Republic of China
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| |
Collapse
|