1
|
Kaźmierczak M, Weselski M, Siczek M, Wolny JA, Schünemann V, Bronisz R. [2 + 2] Photocyclization converts thermally induced spin crossover effect into "hidden hysteresis" one. Chem Sci 2025; 16:7884-7893. [PMID: 40191125 PMCID: PMC11966535 DOI: 10.1039/d4sc05587j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The light induced [2 + 2] cyclization of the flexible coumarin-based ligand (L) converts the spin crossover active HS1 ⇆ LS1 mononuclear system [Fe(L)6](BF4)2·4CH3CN (1) into the high spin 1D coordination polymer (2). The contribution of the resulting high spin form HS2 is directly related to the degree of photoconversion and, at the same time, practically does not affect the properties of the remaining thermally active spin crossover centers (HS1). The origin of such a fundamental change in properties is an appearance of strain caused by ligand dimerization, which acts directly on the metal chromophores and is transmitted to the crystal lattice. The spin state of 2 can be changed by applying pressure as well as by light irradiation revealing a "hidden hysteresis" phenomenon (Appl. Phys. Lett., 2008, 93, 21906), referring to the appearance of the low spin state not accessible through thermal activation but through reversed-LIESST. A unique feature of 2 is the feasibility to attain any steady state within the hidden hysteresis region by combination of perturbations triggered by changes in temperature and light (808 nm HS2 → LS2 and 532 nm LS2 → HS2). Such states are stable within a time scale of several hours.
Collapse
Affiliation(s)
- Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| | - Juliusz A Wolny
- Faculty of Physics, RPTU Kaiserslautern-Landau Erwin Schrödinger Str. 46 67663 Kaiserlautern Germany
| | - Volker Schünemann
- Faculty of Physics, RPTU Kaiserslautern-Landau Erwin Schrödinger Str. 46 67663 Kaiserlautern Germany
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| |
Collapse
|
2
|
Maliuzhenko V, Weselski M, Gregoliński J, Książek M, Kusz J, Bronisz R. Spin Crossover Quenching by "Racemization" in a Family of trans-1,2-Di(tetrazol-1-yl)cyclopentane-Based Fe(II) 1D Coordination Polymers. Inorg Chem 2024; 63:17762-17773. [PMID: 39265981 PMCID: PMC11423399 DOI: 10.1021/acs.inorgchem.4c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Optically pure (RR)- and racemic (RR/SS)-trans-1,2-di(tetrazol-1-yl)cyclopentane were synthesized and used to prepare homo- and heterochiral Fe(II) coordination compounds. [Fe((RR/SS)-C7H10N8)2(CH3CN)2](BF4)2 (1A), [Fe((RR/SS)-C7H10N8)2(C2H5CN)2](BF4)2 (2A), [Fe((RR)-C7H10N8)2(CH3CN)2](BF4)2·2CH3CN (1B·solv), and [Fe((RR)-C7H10N8)2(C2H5CN)2](BF4)2 (2B) form a family of one-dimensional coordination polymers. Fe(II) cations in these complexes are characterized by a heteroleptic coordination environment: the neighboring metal centers are bridged by two 1,2-di(tetrazol-1-yl)cyclopentane molecules, while the nitrile molecules (acetonitrile or propionitrile, respectively) occupy the axial positions. Independently of the kind of nitrile coligands, an ability to thermally induce spin crossover (SCO) is governed by chirality. 1B·solv and 2B exhibit abrupt and complete SCO occurring at T1/2 = 144 K and T1/2 = 228 K, respectively. Desolvated form, 1B (of the same stoichiometry as 2B), also exhibits SCO (T1/2 = 215 K). In contrast, an exchange within the polymeric chain of half of the RR molecules with the SS enantiomeric form results in formation of 1A and 2A, which remain in stable high-spin (HS) form down to 10 K. It has been shown that moving from a homochiral to a heterochiral system changes the structure of the polymeric unit (while maintaining the same polymer dimensionality and bridging fashion) that leads to the deep reorganization of the further coordination spheres, including the anion network.
Collapse
Affiliation(s)
- Vladyslav Maliuzhenko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Janusz Gregoliński
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
Tołoczko A, Kaźmierczak M, Książek M, Weselski M, Siczek M, Kusz J, Bronisz R. Expanding the dimensionality of bis(tetrazolyl)alkane-based Fe(II) coordination polymers by the application of dinitrile coligands. Dalton Trans 2024; 53:7163-7174. [PMID: 38573306 DOI: 10.1039/d4dt00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Reactions between 1,2-di(tetrazol-2-yl)ethane (ebtz), 1,6-di(tetrazol-2-yl)hexane (hbtz) or 1,1'-di(tetrazol-1-yl)methane (1ditz) and Fe(BF4)2 in the presence of adiponitrile (ADN), glutaronitrile (GLN) or suberonitrile (SUN) resulted in the formation of coordination polymers [Fe(μ-ebtz)2(μ-ADN)](BF4)2 (1), [Fe(μ-hbtz)2(μ-ADN)](BF4)2 (2), [Fe(μ-1ditz)2(GLN)2](BF4)2·GLN (3) and [Fe(μ-1ditz)2(μ-SUN)](BF4)2·SUN (4). It was established that the application of dinitriles allows an increase in the dimensionality of the ebtz and hbtz based systems while maintaining the structure of the polymeric units characteristic of previously studied mononitrile based analogues. In 3 and 4, regardless of the type of dinitrile coligand, the motif of 2D polymeric layers constituted by 1ditz molecules remains preserved. However, the dimensionality of 1ditz based networks is governed by the coordination modes of dinitriles. 3, based on a shorter molecule of glutaronitrile, crystallizes as a two-dimensional (2D) coordination polymer. In this compound, dinitriles coordinate monodentately or play the role of guest molecules. The substitution of glutaronitrile with suberonitrile enables the bridging of neighboring polymeric layers, resulting in a 3D network. The intentional selection of bis(tetrazoles) and dinitriles as building blocks has led, as expected, to obtaining systems with the structure of the first coordination sphere consisting of four tetrazole rings and two axially coordinated nitrile molecules. It created the conditions required for the occurrence of thermally induced spin crossover. Magnetic measurements and single crystal X-ray diffraction studies were used for the characterization of the spin crossover properties of 1-4.
Collapse
Affiliation(s)
- Aleksandra Tołoczko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
4
|
Gajecki L, Sawicka B, Berg DJ, Oliver AG. Synthesis and Magnetic Studies of Two Neutral, Bis-Ligand Fe(II) Complexes Containing Carbazole- Bis(tetrazole) Ligands. Inorg Chem 2023. [PMID: 37478316 DOI: 10.1021/acs.inorgchem.3c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Previously reported carbazole-bis(tetrazole) (CzTR) ligands (where R = iPr and CH2-2,4,6-C6H2Me3) were used to synthesize air-stable, six-coordinate, octahedral bis-ligand Fe(II) complexes (CzTR)2Fe. The synthesis and characterization of these complexes using 1H nuclear magnetic resonance (NMR), X-ray crystallography, Mössbauer spectroscopy, and density functional theory (DFT) calculations are reported. Analysis of the magnetic properties revealed that the isopropyl derivative displays thermally induced spin crossover (SCO) over a temperature range of 150-350 K. This transition appears as an abrupt two-step transition in the solid state but simplifies to a smooth one-step transition in solution. The two-step transition in the solid state has been postulated to be due to lattice and solvation effects. In contrast, the slightly bulkier substituted CH2-2,4,6-C6H2Me3 (CH2Mes) Fe complex displays dramatically different magnetic behavior with no SCO and magnetic data suggesting low-spin Fe(II) with a possible TIP contribution. DFT calculations support the postulate that the change in magnetic behavior is primarily due to the nature of the ligand substituents.
Collapse
Affiliation(s)
- Leah Gajecki
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| | - Barbara Sawicka
- Department of Mechanical Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia, Canada V8W 2Y2
| | - David J Berg
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| | - Allen G Oliver
- Department of Chemistry & Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Ahmed M, Arachchige KSA, Xie Z, Price JR, Cruddas J, Clegg JK, Powell BJ, Kepert CJ, Neville SM. Guest-Induced Multistep to Single-Step Spin-Crossover Switching in a 2-D Hofmann-Like Framework with an Amide-Appended Ligand. Inorg Chem 2022; 61:11667-11674. [PMID: 35862437 DOI: 10.1021/acs.inorgchem.2c01253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A detailed study of the two-dimensional (2-D) Hofmann-like framework [Fe(furpy)2Pd(CN)4]·nG (furpy: N-(pyridin-4-yl)furan-2-carboxamide, G = H2O,EtOH (A·H2O,Et), and H2O (A·H2O)) is presented, including the structural and spin-crossover (SCO) implications of subtle guest modification. This 2-D framework is characterized by undulating Hofmann layers and an array of interlayer spacing environments─this is a strategic approach that we achieve by the inclusion of a ligand with multiple host-host and host-guest interaction sites. Variable-temperature magnetic susceptibility studies reveal an asymmetric multistep SCO for A·H2O,Et and an abrupt single-step SCO for A·H2O with an upshift in transition temperature of ∼75 K. Single-crystal analyses show a primitive orthorhombic symmetry for A·H2O,Et characterized by a unique FeII center─the multistep SCO character is attributed to local ligand orientation. Counterintuitively, A·H2O shows a triclinic symmetry with two inequivalent FeII centers that undergo a cooperative single-step high-spin (HS)-to-low-spin (LS) transition. We conduct detailed structure-function analyses to understand how the guest ethanol influences the delicate balance between framework communication and, therefore, the local structure and spin-state transition mechanism.
Collapse
Affiliation(s)
- Manan Ahmed
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zixi Xie
- The School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Jason R Price
- Australian Synchrotron, ANSTO Clayton, Victoria 3800, Australia
| | - Jace Cruddas
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Cameron J Kepert
- The School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Suzanne M Neville
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
6
|
Książek M, Weselski M, Kusz J, Bronisz R. Single crystal-to-single crystal transformation - from two distinct to three distinct spin crossover centers in 2D coordination polymer [Fe(bbtr) 3](CF 3SO 3) 2. Dalton Trans 2021; 51:958-968. [PMID: 34931210 DOI: 10.1039/d1dt03578a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-Di(1,2,3-triazol-1-yl)butane (bbtr) forms a two-dimensional (2D) coordination polymer (1) in a reaction with iron(II) triflate. In the crystal lattice there are two crystallographically unique iron(II) ions surrounded octahedrally by a 1,2,3-triazole ring coordinated through nitrogen atoms N3. Single crystal X-ray diffraction studies revealed that spin crossover for each crystallographically independent iron(II) ion proceeds at a different temperature (T1/2(Fe1) = 201 K; T1/2(Fe2) = 216 K), while the magnetic measurements showed that there is one step, complete thermally induced spin crossover (T1/2 = 205 K). Complex 1 undergoes, with time, single crystal-to-single crystal transformation (SCSC) to the converted system (1c) from the R3̄ to the P63 space group, accompanied by significant changes in the lattice parameter c (a shortening of approximately one-third) and consequently unit cell volume. Structural transformation is associated with rebuilding of the polymeric layer as well as the anion network, which is reflected in the results of Mössbauer studies. In the polymorphic system (1c) there are three crystallographically independent iron(II) ions. The temperature dependence results for magnetic susceptibility indicated complete, one-step spin crossover very similar to that of 1; however, single-crystal X-ray diffraction studies of 1c revealed that spin crossover for each crystallographically independent iron(II) ion occurs in a different manner, revealing three elementary stages (T1/2(Fe1) = 200 K; T1/2(Fe2) = 212 K, T1/2(Fe3) = 214 K).
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
7
|
Jornet-Mollá V, Giménez-Saiz C, Yufit DS, Howard JAK, Romero FM. A Reversible Hydrogen-Bond Isomerization Triggered by an Abrupt Spin Crossover near Room Temperature. Chemistry 2021; 27:740-750. [PMID: 32812653 DOI: 10.1002/chem.202003654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 11/10/2022]
Abstract
The spin crossover salt [Fe(bpp)2 ](isonicNO)2 ⋅ 2.4 H2 O (1⋅2.4 H2 O) (bpp=2,6-bis(pyrazol-3-yl)pyridine; isonicNO=isonicotinate N-oxide anion) exhibits a very abrupt spin crossover at T1/2 =274.4 K. This triggers a supramolecular linkage (H-bond) isomerization that responds reversibly towards light irradiation or temperature change. Isotopic effects in the thermomagnetic behavior reveal the importance of hydrogen bonds in defining the magnetic state. Further, the title compound can be reversibly dehydrated to afford 1, a material that also exhibits spin crossover coupled to H-bond isomerization, leading to strong kinetic effects in the thermomagnetic properties.
Collapse
Affiliation(s)
- Verónica Jornet-Mollá
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, 46071, Valencia, Spain
| | - Carlos Giménez-Saiz
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, 46071, Valencia, Spain
| | - Dmitry S Yufit
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | | | - Francisco M Romero
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, 46071, Valencia, Spain
| |
Collapse
|
8
|
Książek M, Weselski M, Kaźmierczak M, Tołoczko A, Siczek M, Durlak P, Wolny JA, Schünemann V, Kusz J, Bronisz R. Spatiotemporal Studies of the One-Dimensional Coordination Polymer [Fe(ebtz) 2 (C 2 H 5 CN) 2 ](BF 4 ) 2 : Tug of War between the Nitrile Reorientation Versus Crystal Lattice as a Tool for Tuning the Spin Crossover Properties*. Chemistry 2020; 26:14419-14434. [PMID: 32678463 DOI: 10.1002/chem.202002460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4 )2 ⋅6 H2 O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2 (RCN)2 ](BF4 )2 ⋅nRCN (n=2 for R=CH3 (1) and n=0 for R=C2 H5 (2) C3 H7 (3), C3 H5 (4), CH2 Cl (5)) exhibiting spin crossover (SCO). SCO in 1 and 3-5 is complete and occurs above 160 K. In 2, it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2 ↓ =78 K, T1/2 ↑ =123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2. An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS -VLS ) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe-nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2 (C2 H5 CN/C3 H7 CN)2 ](BF4 )2 mixed crystals (2 a, 2 b), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1-5 suggest a particular possibility of 2 to adopt a low (140-145°) value of its Fe-N-C(propionitrile) angle.
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Aleksandra Tołoczko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr Durlak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Juliusz A Wolny
- Faculty of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663, Kaiserlautern, Germany
| | - Volker Schünemann
- Faculty of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663, Kaiserlautern, Germany
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
9
|
1,3-Bis(1-methyl-1H-tetrazol-5-yl)propane and its coordination polymers with Cu2Cl4 and Cu3Cl6 units. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Książek M, Weselski M, Dreczko A, Maliuzhenko V, Kaźmierczak M, Tołoczko A, Kusz J, Bronisz R. Two ways of spin crossover in an iron(ii) coordination polymer associated with conformational changes of a bridging ligand. Dalton Trans 2020; 49:9811-9819. [DOI: 10.1039/d0dt01696a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural phase transition in [Fe(bbtre)3](ClO4)2·2CH3CN (bbtre = 1,4-di(1-ethyl-1,2,3-triazol-5-yl)butane) plays the role of a switch, allowing spin crossover to be carried out in two ways.
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics
- University of Silesia
- 41-500 Chorzów
- Poland
| | - Marek Weselski
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | | | | | | | - Joachim Kusz
- Institute of Physics
- University of Silesia
- 41-500 Chorzów
- Poland
| | - Robert Bronisz
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|