1
|
Emamverdi F, Huang J, Razavi NM, Bojdys MJ, Foster AB, Budd PM, Böhning M, Schönhals A. Molecular Mobility and Gas Transport Properties of Mixed Matrix Membranes Based on PIM-1 and a Phosphinine Containing Covalent Organic Framework. Macromolecules 2024; 57:1829-1845. [PMID: 38435679 PMCID: PMC10902888 DOI: 10.1021/acs.macromol.3c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
Polymers with intrinsic microporosity (PIMs) are gaining attention as gas separation membranes. Nevertheless, they face limitations due to their pronounced physical aging. In this study, a covalent organic framework containing λ5-phosphinine moieties, CPSF-EtO, was incorporated as a nanofiller (concentration range 0-10 wt %) into a PIM-1 matrix forming dense films with a thickness of ca. 100 μm. The aim of the investigation was to investigate possible enhancements of gas transport properties and mitigating effects on physical aging. The incorporation of the nanofiller occurred on an nanoaggregate level with domains up to 100 nm, as observed by T-SEM and confirmed by X-ray scattering. Moreover, the X-ray data show that the structure of the microporous network of the PIM-1 matrix is changed by the nanofiller. As molecular mobility is fundamental for gas transport as well as for physical aging, the study includes dielectric investigations of pure PIM-1 and PIM-1/CPSF-EtO mixed matrix membranes to establish a correlation between the molecular mobility and the gas transport properties. Using the time-lag method, the gas permeability and the permselectivity were determined for N2, O2, CH4, and CO2 for samples with variation in filler content. A significant increase in the permeability of CH4 and CO2 (50% increase compared to pure PIM-1) was observed for a concentration of 5 wt % of the nanofiller. Furthermore, the most pronounced change in the permselectivity was found for the gas pair CO2/N2 at a filler concentration of 7 wt %.
Collapse
Affiliation(s)
- Farnaz Emamverdi
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Jieyang Huang
- Department
of Chemistry, Humboldt University, Brook-Taylor Straße 2, Berlin 12489, Germany
| | - Negar Mosane Razavi
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Michael J. Bojdys
- Department
of Chemistry, Humboldt University, Brook-Taylor Straße 2, Berlin 12489, Germany
| | - Andrew B. Foster
- School
of Chemistry, University of Manchester, Manchester M 13 9PL, United Kingdom
| | - Peter M. Budd
- School
of Chemistry, University of Manchester, Manchester M 13 9PL, United Kingdom
| | - Martin Böhning
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Andreas Schönhals
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| |
Collapse
|
2
|
Zhang Z, Zhang B, Han X, Chen H, Xue C, Peng M, Ma G, Ren Y. Stille type P-C coupling polycondensation towards phosphorus-crosslinked polythiophenes with P-regulated photocatalytic hydrogen evolution. Chem Sci 2023; 14:2990-2998. [PMID: 36937600 PMCID: PMC10016342 DOI: 10.1039/d2sc06702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Recently, exploring new type polymerization protocols has been a major driving force in advancing organic polymers into highly functional materials. Herein we report a new polycondensation protocol to implant the phosphorus (P) atom in the main backbone of crosslinked polythiophenes. The polycondensation harnesses a Stille phosphorus-carbon (P-C) coupling reaction between phosphorus halides and aryl stannanes that has not been reported previously. Mechanistic studies uncovered that the P-electrophile makes the reactivity of a catalytic Pd-center highly sensitive towards the chemical structures of aryl stannanes, which is distinct from the typical Stille carbon-carbon coupling reaction. The efficient P-C polycondensation afforded a series of P-crosslinked polythiophenes (PC-PTs). Leveraging on the direct P-crosslinking polymerization, solid-state 31P NMR studies revealed highly uniform crosslinking environments. Efficient post-polymerization P-chemistry was also applied to the PC-PTs, which readily yielded the polymers with various P-environments. As a proof of concept, new PC-PTs were applied as the photocatalysts for H2 evolution under visible light irradiation. PC-PTs with an ionic P(Me)-center exhibit a H2 evolution rate up to 2050 μmol h-1 g-1, which is much higher than those of PC-PTs with a P(O)-center (900 μmol h-1 g-1) and P(iii)-center (155 μmol h-1 g-1). For the first time, the studies reveal that regulating P-center environments can be an effective strategy for fine tuning the photocatalytic H2 evolution performance of organic polymers.
Collapse
Affiliation(s)
- Zhikai Zhang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Boyang Zhang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Xue Han
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Hongyi Chen
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Cece Xue
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Min Peng
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Guijun Ma
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
3
|
Wu M, Gao G, Yang C, Sun P, Li F. Highly Active Rh Catalysts with Strong π-Acceptor Phosphine-Containing Porous Organic Polymers for Alkene Hydroformylation. J Org Chem 2022; 88:5059-5068. [PMID: 36343284 DOI: 10.1021/acs.joc.2c02105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphine-containing porous organic polymers (phosphine-POPs) are a kind of potential catalyst support for alkene hydroformylation. However, the synthesis of phosphine-POPs with strong π-acceptor is still a challenge. Herein, we report the synthesis of phosphine-POPs with different π-acceptor properties [POL-P(Pyr)3, CPOL-BPa&PPh3-15, and CPOL-BP&PPh3-15] and evaluated their performances as ligands to coordinate with Rh(acac)(CO)2 for hydroformylation of alkenes. We found that the Rh center with stronger π-acceptor phosphine-POPs showed better catalytic performance. Rh/CPOL-BPa&PPh3-15 with strong π-acceptor bidentate phosphoramidites showed obviously higher activity and regioselectivity (TON = 7.5 × 103, l/b = 26.1) than Rh/CPOL-BP&PPh3-15 (TON = 5.3 × 103, l/b = 5.0) with weaker π-acceptor bidentate phosphonites. Particularly, the TON of the hydroformylation reached 27.7 × 103 upon using Rh/POL-P(Pyr)3 which possessed tris(1-pyrrolyl)phosphane coordination sites. Overall, our study provides an orientation to design phosphine-POPs for hydroformylation reactions.
Collapse
Affiliation(s)
- Miaojiang Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chao Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Peng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
4
|
Ledos N, Sangchai T, Knysh I, Bousquet MHE, Manzhi P, Cordier M, Tondelier D, Geffroy B, Jacquemin D, Bouit PA, Hissler M. Tuning the Charge Transfer in λ 5-Phosphinines with Amino Substituents. Org Lett 2022; 24:6869-6873. [PMID: 36074731 DOI: 10.1021/acs.orglett.2c02846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the substitution of λ5-phosphinines (2,6-dicarbonitrile diphenyl-1-λ5-phosphinine) with an amino group. The impact of these modifications on both the optical and redox properties is investigated using a joint experimental/theoretical approach. In particular, we show that the choice of the donor diphenylamino group dramatically impacts the nature of the charge transfer. The use of di(methoxyphenyl)amine redshifts the optical properties and allows thermally activated delayed fluorescence in the solid state. Finally, we demonstrated that λ5-phosphinines with an amino group can be used as active emitters in an electroluminescent device.
Collapse
Affiliation(s)
- Nicolas Ledos
- Univ Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France
| | | | - Iryna Knysh
- CNRS, CEISAM UMR 6230, Nantes University,44000 Nantes, France
| | | | - Payal Manzhi
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, 91128 Palaiseau Cedex, France.,Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France
| | - Denis Tondelier
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, 91128 Palaiseau Cedex, France
| | - Bernard Geffroy
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, 91128 Palaiseau Cedex, France.,Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - Denis Jacquemin
- CNRS, CEISAM UMR 6230, Nantes University,44000 Nantes, France
| | | | - Muriel Hissler
- Univ Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France
| |
Collapse
|
5
|
Beránek T, Jakubec M, Sýkora J, Císařová I, Žádný J, Storch J. Synthesis of 2-Phospha[7]helicene, a Helicene with a Terminal Phosphinine Ring. Org Lett 2022; 24:4756-4761. [PMID: 35748535 DOI: 10.1021/acs.orglett.2c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic strategy toward phosphahelicenes containing a terminal phosphinine ring has been explored. The 4-phenyl-6-methyl-2-phospha[7]helicene was prepared from starting 2-bromobenzo[c]phenanthrene in 12% overall yield in 12 steps. The synthetic approach involves introduction of the phosphorus function prior to photocyclization forming the final helicene skeleton, followed by the formation of a phosphorus hexacycle. The structure of the first phosphahelicene with a terminal phosphinine ring was confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Tomáš Beránek
- Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
| | - Martin Jakubec
- Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
| | - Jan Sýkora
- Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Jaroslav Žádný
- Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
| | - Jan Storch
- Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
| |
Collapse
|
6
|
Xue C, Peng M, Zhang Z, Han X, Wang Q, Li C, Liu H, Li T, Yu N, Ren Y. Conjugated Boron Porous Polymers Having Strong p−π* Conjugation for Amine Sensing and Absorption. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cece Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Min Peng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Zhikai Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Xue Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Conger Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Haiming Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| |
Collapse
|
7
|
Yoshimura A, Misaki Y. Periphery Modification of Tetrathiafulvalenes: Recent Development and Applications. CHEM REC 2021; 21:3520-3531. [PMID: 34086402 DOI: 10.1002/tcr.202100107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Tetrathiafulvalene (TTF) and its analogs are fascinating molecules in materials science based on their excellent electron-donating abilities. This personal account describes recent advances in the synthesis of TTF analogs for functional materials via the palladium-catalyzed modification of peripheries of TTF analogs. We first consider three types of molecules: fluorophore-TTF hybrid molecules, multi-redox systems, and an organic ligand for metal-organic frameworks. These molecules were successfully synthesized via Stille coupling or palladium-catalyzed direct C-H arylation and their structural, electrochemical, and optical properties were clarified. Subsequently, phosphorus-substituted TTF analogs were successfully synthesized for future applications of redox-active phosphine ligands for metal catalysts. The development of these molecules can significantly affect the advancement of chemical science.
Collapse
Affiliation(s)
- Aya Yoshimura
- Department of Applied Chemistry, Graduate School of Science and Engineering/ Research Unit for Power Generation and Storage Materials, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Yohji Misaki
- Department of Applied Chemistry, Graduate School of Science and Engineering/ Research Unit for Power Generation and Storage Materials, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577, Japan.,Research Unit for Development of Organic Superconductors, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| |
Collapse
|
8
|
Kumar P, Das A, Maji B. Phosphorus containing porous organic polymers: synthetic techniques and applications in organic synthesis and catalysis. Org Biomol Chem 2021; 19:4174-4192. [PMID: 33871521 DOI: 10.1039/d1ob00137j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The phosphorus-containing porous organic polymer is a trending material for the synthesis of heterogeneous catalysts. Decades of investigations have established phosphines as versatile ligands in homogeneous catalysis. Recently, phosphine-based heterogeneous catalysts were synthesized to exploit the same electronic properties while leveraging extra stability and reusability. In the last few decades, the catalysts were applied in diverse organic transformations, including hydroformylation, hydrogenation, C-C, C-N and C-X coupling, hydrosilylation, oxidative-carbonylation reactions, and so on. However, even though these polymers possess a multifunctional character, they face multiple synthetic issues in controlling the pore size, increasing the surface area, and creating a single type of active site. This review summarizes the developments in this field over the last few decades, highlighting the current limitation and future scope.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | | | | |
Collapse
|
9
|
Liu Y, Dikhtiarenko A, Xu N, Sun J, Tang J, Wang K, Xu B, Tong Q, Heeres HJ, He S, Gascon J, Fan Y. Triphenylphosphine-Based Covalent Organic Frameworks and Heterogeneous Rh-P-COFs Catalysts. Chemistry 2020; 26:12134-12139. [PMID: 32488940 PMCID: PMC7540510 DOI: 10.1002/chem.202002150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/25/2022]
Abstract
The synthesis of phosphine-based functional covalent organic frameworks (COFs) has attracted great attention recently. Herein, we present two examples of triphenylphosphine-based COFs (termed P-COFs) with well-defined crystalline structures, high specific surface areas, and good thermal stability. Furthermore, rhodium catalysts with these P-COFs as support material show high turnover frequency for the hydroformylation of olefins, as well as excellent recycling performance. This work not only extends the phosphine-based COF family, but also demonstrates their application in immobilizing homogeneous metal-based (e.g., Rh-phosphine) catalysts for application in heterogeneous catalysis.
Collapse
Affiliation(s)
- Yubing Liu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Alla Dikhtiarenko
- KAUST Catalysis Center, Advanced Catalytic MaterialsKing Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Naizhang Xu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Jiawei Sun
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Jie Tang
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Kaiqiang Wang
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Bolian Xu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Qing Tong
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Hero Jan Heeres
- Green Chemical Reaction EngineeringUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Songbo He
- Green Chemical Reaction EngineeringUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Jorge Gascon
- KAUST Catalysis Center, Advanced Catalytic MaterialsKing Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Yining Fan
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| |
Collapse
|
10
|
Rahman M, Tian H, Edvinsson T. Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts. Angew Chem Int Ed Engl 2020; 59:16278-16293. [PMID: 32329950 PMCID: PMC7540687 DOI: 10.1002/anie.202002561] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/02/2022]
Abstract
In pursuit of inexpensive and earth abundant photocatalysts for solar hydrogen production from water, conjugated polymers have shown potential to be a viable alternative to widely used inorganic counterparts. The photocatalytic performance of polymeric photocatalysts, however, is very poor in comparison to that of inorganic photocatalysts. Most of the organic photocatalysts are active in hydrogen production only when a sacrificial electron donor (SED) is added into the solution, and their high performances often rely on presence of noble metal co-catalyst (e.g. Pt). For pursuing a carbon neutral and cost-effective green hydrogen production, unassisted hydrogen production solely from water is one of the critical requirements to translate a mere bench-top research interest into the real world applications. Although this is a generic problem for both inorganic and organic types of photocatalysts, organic photocatalysts are mostly investigated in the half-reaction, and have so far shown limited success in hydrogen production from overall water-splitting. To make progress, this article exclusively discusses critical factors that are limiting the overall water-splitting in organic photocatalysts. Additionally, we also have extended the discussion to issues related to stability, accurate reporting of the hydrogen production as well as challenges to be resolved to reach 10 % STH (solar-to-hydrogen) conversion efficiency.
Collapse
Affiliation(s)
- Mohammad Rahman
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala UniversitySweden
| | - Haining Tian
- Department of ChemistryDivision of Physical chemistryAngstrom LaboratoryUppsala UniversitySweden
| | - Tomas Edvinsson
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala UniversitySweden
| |
Collapse
|
11
|
Pfeifer G, Chahdoura F, Papke M, Weber M, Szűcs R, Geffroy B, Tondelier D, Nyulászi L, Hissler M, Müller C. Synthesis, Electronic Properties and OLED Devices of Chromophores Based on λ 5 -Phosphinines. Chemistry 2020; 26:10534-10543. [PMID: 32092780 PMCID: PMC7496645 DOI: 10.1002/chem.202000932] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/18/2022]
Abstract
A new series of 2,4,6-triaryl-λ5 -phosphinines have been synthesized that contain different substituents both on the carbon backbone and the phosphorus atom of the six-membered heterocycle. Their optical and redox properties were studied in detail, supported by in-depth theoretical calculations. The modularity of the synthetic strategy allowed the establishment of structure-property relationships for this class of compounds and an OLED based on a blue phosphinine emitter could be developed for the first time.
Collapse
Affiliation(s)
- Gregor Pfeifer
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstrasse 34/3614195BerlinGermany
| | | | - Martin Papke
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstrasse 34/3614195BerlinGermany
| | - Manuela Weber
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstrasse 34/3614195BerlinGermany
| | - Rózsa Szűcs
- Department of Inorganic and Analytical Chemistry and MTA-BME Computation Driven Chemistry Research GroupBudapest University of Technology and EconomicsSzt. Gellért tér 41111BudapestHungary
| | - Bernard Geffroy
- LICSEN, NIMBE, CEA, CNRSUniversité Paris-Saclay, CEA SaclayGif-sur-YvetteCEDEX 91191France
| | - Denis Tondelier
- LICSEN, NIMBE, CEA, CNRSUniversité Paris-Saclay, CEA SaclayGif-sur-YvetteCEDEX 91191France
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry and MTA-BME Computation Driven Chemistry Research GroupBudapest University of Technology and EconomicsSzt. Gellért tér 41111BudapestHungary
| | | | - Christian Müller
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstrasse 34/3614195BerlinGermany
| |
Collapse
|
12
|
Rahman M, Tian H, Edvinsson T. Revisiting the Limiting Factors for Overall Water‐Splitting on Organic Photocatalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammad Rahman
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala University Sweden
| | - Haining Tian
- Department of ChemistryDivision of Physical chemistryAngstrom LaboratoryUppsala University Sweden
| | - Tomas Edvinsson
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala University Sweden
| |
Collapse
|
13
|
Leitl J, Coburger P, Scott DJ, Ziegler CGP, Hierlmeier G, Wolf R, van Leest NP, de Bruin B, Hörner G, Müller C. Phosphorus Analogues of [Ni(bpy)2]: Synthesis and Application in Carbon–Halogen Bond Activation. Inorg Chem 2020; 59:9951-9961. [DOI: 10.1021/acs.inorgchem.0c01115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Leitl
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - P. Coburger
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - D. J. Scott
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - C. G. P. Ziegler
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - G. Hierlmeier
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - R. Wolf
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - N. P. van Leest
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B. de Bruin
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - G. Hörner
- Department of Chemistry, Inorganic Chemistry IV, Unversität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - C. Müller
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34/36, 14195 Berlin, Germany
| |
Collapse
|
14
|
Mackenzie HK, Rawe BW, Samedov K, Walsgrove HTG, Uva A, Han Z, Gates DP. A Smart Phosphine–Diyne Polymer Displays “Turn-On” Emission with a High Selectivity for Gold(I/III) Ions. J Am Chem Soc 2020; 142:10319-10324. [DOI: 10.1021/jacs.0c04330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harvey K. Mackenzie
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Benjamin W. Rawe
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Kerim Samedov
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Henry T. G. Walsgrove
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Azalea Uva
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Zeyu Han
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Derek P. Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
15
|
Rahman MZ, Kibria MG, Mullins CB. Metal-free photocatalysts for hydrogen evolution. Chem Soc Rev 2020; 49:1887-1931. [DOI: 10.1039/c9cs00313d] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article provides a comprehensive review of the latest progress, challenges and recommended future research related to metal-free photocatalysts for hydrogen productionviawater-splitting.
Collapse
Affiliation(s)
- Mohammad Ziaur Rahman
- John J. Mcketta Department of Chemical Engineering and Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering
- University of Calgary
- 2500 University Drive
- NW Calgary
- Canada
| | - Charles Buddie Mullins
- John J. Mcketta Department of Chemical Engineering and Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
16
|
Huang J, Tarábek J, Kulkarni R, Wang C, Dračínský M, Smales GJ, Tian Y, Ren S, Pauw BR, Resch‐Genger U, Bojdys MJ. A π-Conjugated, Covalent Phosphinine Framework. Chemistry 2019; 25:12342-12348. [PMID: 31322767 PMCID: PMC6790668 DOI: 10.1002/chem.201900281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 11/18/2022]
Abstract
Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si, and S have found their way into their building blocks so far. Here, the toolbox available to polymer and materials chemists is expanded by one additional nonmetal, phosphorus. Starting with a building block that contains a λ5 -phosphinine (C5 P) moiety, a number of polymerization protocols are evaluated, finally obtaining a π-conjugated, covalent phosphinine-based framework (CPF-1) through Suzuki-Miyaura coupling. CPF-1 is a weakly porous polymer glass (72.4 m2 g-1 BET at 77 K) with green fluorescence (λmax =546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co-catalyst at a rate of 33.3 μmol h-1 g-1 . These results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine-based frameworks show promising electronic and optical properties, which might spark future interest in their applications in light-emitting devices and heterogeneous catalysis.
Collapse
Affiliation(s)
- Jieyang Huang
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
- Institute of Organic Chemistry and Biochemistry of the CASFlemingovo nám. 2166 10PragueCzech Republic
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry of the CASFlemingovo nám. 2166 10PragueCzech Republic
| | - Ranjit Kulkarni
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
- Institute of Organic Chemistry and Biochemistry of the CASFlemingovo nám. 2166 10PragueCzech Republic
| | - Cui Wang
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard- Willstätter-Straße 1112489BerlinGermany
- Institute of Chemistry and BiochemistryFree University of BerlinTakustrasse 314195BerlinGermany
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the CASFlemingovo nám. 2166 10PragueCzech Republic
| | - Glen J. Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM)Unter den Eichen 8712205BerlinGermany
| | - Yu Tian
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shijie Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Brian R. Pauw
- Bundesanstalt für Materialforschung und -prüfung (BAM)Unter den Eichen 8712205BerlinGermany
| | - Ute Resch‐Genger
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard- Willstätter-Straße 1112489BerlinGermany
| | - Michael J. Bojdys
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
- Institute of Organic Chemistry and Biochemistry of the CASFlemingovo nám. 2166 10PragueCzech Republic
| |
Collapse
|