1
|
Wu A, Guo Y, Li M, Li Q, Zang H, Li J. Tunable Chirality of Self-Assembled Dipeptides Mediated by Bipyridine Derivative. Angew Chem Int Ed Engl 2023; 62:e202314368. [PMID: 37938522 DOI: 10.1002/anie.202314368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Supramolecular peptide assemblies have been widely used for the development of biomedical, catalytical, and optical materials with chiral nanostructures in view of the intrinsic chirality of peptides. However, the assembly pathway and chiral transformation behavior of various peptides remain largely elusive especially for the transient assemblies under out-of-equilibrium conditions. Herein, the N-fluorenylmethoxycarbonyl-protected phenylalanine-tyrosine dipeptide (Fmoc-FY) was used as a peptide assembly platform, which showed that the assembly proceeds multistep evolution. The original spheres caused by liquid-liquid phase separation (LLPS) can nucleate and elongate into the formation of right-handed helices which were metastable and easily converted into microribbons. Interestingly, a bipyridine derivative can be introduced to effectively control the assembly pathway and induce the formation of thermodynamically stable right-handed or left-handed helices at different stoichiometric ratios. In addition, the chiral assembly can also be regulated by ultrasound or enzyme catalysis. This minimalistic system not only broadens the nucleation-elongation mechanisms of protein aggregates but also promotes the controllable design and development of chiral biomaterials.
Collapse
Affiliation(s)
- Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxian Guo
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong, 250014, China
| | - Meiqi Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qin Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Huang Z, Jiang T, Wang J, Ma X, Tian H. Real-Time Visual Monitoring of Kinetically Controlled Self-Assembly. Angew Chem Int Ed Engl 2021; 60:2855-2860. [PMID: 33098375 DOI: 10.1002/anie.202011740] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 01/20/2023]
Abstract
The construction of artificial structures through hierarchical self-assembly based on noncovalent interactions, as well as monitoring during the self-assembly process, are important aspects of dynamic supramolecular chemistry. Herein we describe the complex dynamics of chiral N,N'-diphenyl dihydrodibenzo[a,c]phenazine derivatives (S)/(R)-DPAC, whose different assemblies were found to have distinct optical and morphological characteristics. With ratiometric fluorescence originating from vibration-induced emission (VIE), the self-assembly process from kinetic traps to the thermodynamic equilibrium state could be monitored in real time by optical spectrometry. During the morphology transformation from particles to nanobricks, strong circularly polarized luminescence was induced with glum =1.6×10-2 . The excited-state characteristics of the self-assemblies enabled investigation of the relationship between molecular aggregation and conformational change, thus allowing effective monitoring of the sophisticated supramolecular self-assembly process.
Collapse
Affiliation(s)
- Zizhao Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Tao Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Jie Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| |
Collapse
|
3
|
Huang Z, Jiang T, Wang J, Ma X, Tian H. Real‐Time Visual Monitoring of Kinetically Controlled Self‐Assembly. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zizhao Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road 130 Shanghai 200237 P. R. China
| | - Tao Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road 130 Shanghai 200237 P. R. China
| | - Jie Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road 130 Shanghai 200237 P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road 130 Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road 130 Shanghai 200237 P. R. China
| |
Collapse
|
4
|
Martín‐Arroyo M, Prado A, Chamorro R, Bilbao N, González‐Rodríguez D. Elucidating Noncovalent Reaction Mechanisms: G‐Quartet as an Intermediate in G‐Quadruplex Assembly. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miguel Martín‐Arroyo
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Anselmo Prado
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Raquel Chamorro
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Nerea Bilbao
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - David González‐Rodríguez
- Nanostructured Molecular Systems and Materials (MSMn) Group Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
5
|
Martín-Arroyo M, Del Prado A, Chamorro R, Bilbao N, González-Rodríguez D. Elucidating Noncovalent Reaction Mechanisms: G-Quartet as an Intermediate in G-Quadruplex Assembly. Angew Chem Int Ed Engl 2020; 59:9041-9046. [PMID: 32125063 DOI: 10.1002/anie.201916261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Indexed: 12/20/2022]
Abstract
In analogy to covalent reactions, the understanding of noncovalent association pathways is fundamental to influence and control any supramolecular process. Following an approach that is reminiscent of covalent methodologies, we study here, for the first time, the mechanism of G-quadruplex formation in organic solvents. Our results support a reaction pathway in which the cation shifts the equilibrium towards a G-quartet transient intermediate, which then acts as a template in the formation of the G-quadruplex product.
Collapse
Affiliation(s)
- Miguel Martín-Arroyo
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Anselmo Del Prado
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Raquel Chamorro
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Nerea Bilbao
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David González-Rodríguez
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|