1
|
Gupta S, Nielsen HH, Thiel AM, Klahn EA, Feng E, Cao HB, Hansen TC, Lelièvre-Berna E, Gukasov A, Kibalin I, Dechert S, Demeshko S, Overgaard J, Meyer F. Multi-Technique Experimental Benchmarking of the Local Magnetic Anisotropy of a Cobalt(II) Single-Ion Magnet. JACS AU 2023; 3:429-440. [PMID: 36873706 PMCID: PMC9975825 DOI: 10.1021/jacsau.2c00575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A comprehensive understanding of the ligand field and its influence on the degeneracy and population of d-orbitals in a specific coordination environment are crucial for the rational design and enhancement of magnetic anisotropy of single-ion magnets (SIMs). Herein, we report the synthesis and comprehensive magnetic characterization of a highly anisotropic CoII SIM, [L2Co](TBA)2 (L is an N,N'-chelating oxanilido ligand), that is stable under ambient conditions. Dynamic magnetization measurements show that this SIM exhibits a large energy barrier to spin reversal U eff > 300 K and magnetic blocking up to 3.5 K, and the property is retained in a frozen solution. Low-temperature single-crystal synchrotron X-ray diffraction used to determine the experimental electron density gave access to Co d-orbital populations and a derived U eff, 261 cm-1, when the coupling between the d x 2 - y 2 and dxy orbitals is taken into account, in very good agreement with ab initio calculations and superconducting quantum interference device results. Powder and single-crystal polarized neutron diffraction (PNPD, PND) have been used to quantify the magnetic anisotropy via the atomic susceptibility tensor, revealing that the easy axis of magnetization is pointing along the N-Co-N' bisectors of the N,N'-chelating ligands (3.4° offset), close to the molecular axis, in good agreement with complete active space self-consistent field/N-electron valence perturbation theory to second order ab initio calculations. This study provides benchmarking for two methods, PNPD and single-crystal PND, on the same 3d SIM, and key benchmarking for current theoretical methods to determine local magnetic anisotropy parameters.
Collapse
Affiliation(s)
- Sandeep
K. Gupta
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Hannah H. Nielsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Andreas M. Thiel
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Emil A. Klahn
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Erxi Feng
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee37831, United States
| | - Huibo B. Cao
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee37831, United States
| | - Thomas C. Hansen
- Institut
Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042Grenoble, France
| | | | - Arsen Gukasov
- Laboratoire
Léon Brillouin (LLB), CEA CE de Saclay, Gif sur Yvette91191, France
| | - Iurii Kibalin
- Laboratoire
Léon Brillouin (LLB), CEA CE de Saclay, Gif sur Yvette91191, France
| | - Sebastian Dechert
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Serhiy Demeshko
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Jacob Overgaard
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Franc Meyer
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
- Universität
Göttingen, International Center for Advanced Studies of Energy
Conversion (ICASEC), Tammannstraße 6, D-37077Göttingen, Germany
| |
Collapse
|
2
|
Ince R, Doudouh A, Claiser N, Furet É, Guizouarn T, Le Pollès L, Kervern G. Determining Local Magnetic Susceptibility Tensors in Paramagnetic Lanthanide Crystalline Powders from Solid-State NMR Chemical Shift Anisotropies. J Phys Chem A 2023; 127:1547-1554. [PMID: 36744789 DOI: 10.1021/acs.jpca.2c06955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exploring magnetic properties at the molecular level is a challenge that has been met by developing many experimental and theoretical solutions, such as polarized neutron diffraction (PND), muon-spin rotation (μ-SR), electron paramagnetic resonance (EPR), SQUID-based magnetometry measurements, and advanced modeling on open-shell systems and relativistic calculations. These methods are powerful tools that shed light on the local magnetic response in specifically designed magnetic materials such as contrast agents, for MRI, molecular magnets, magnetic tags for biological NMR, etc. All of these methods have their advantages and disadvantages. In order to complement the possibilities offered by these methods, we propose a new tool that implements a new approach combining simulation and fitting for high-resolution solid-state NMR spectra of lanthanide-based paramagnetic species. This method relies on a rigorous acquisition thanks to short high-power adiabatic pulses (SHAP) of high-resolution solid-state NMR isotropic and anisotropic data on a powdered magnetic material. It is also based on an efficient modeling of this data thanks to a semiempirical model based on a parametrization of the local magnetism and the crystal structure provided by diffraction methods. The efficiency of the calculation relies on a thorough simplification of the electron-nucleus interactions (point-dipole interaction, no Fermi contact) which is validated by experimental analysis. By taking advantage of the efficient calculation possibilities offered by our method, we can compare a great number of simulated spectra to experimental data and find the best-matching local magnetic susceptibility tensor. This method was applied to a series of isostructural lanthanide oxalates which are used as a benchmark system for many analytical methods. We present the results of thorough solid-state NMR and extensive modeling of the hyperfine interaction (including up to 400 paramagnetic centers) that yield local magnetic susceptibility tensor measurements that are self-consistent as well as consistent with bulk susceptibility measurements.
Collapse
Affiliation(s)
- Ridvan Ince
- Université de Lorraine, UMR 7036 (UL-CNRS) CRM2, BP 70239 Boulevard des Aiguillettes, F 54506Vandœuvre-lès-Nancy, France
| | - Abdelatif Doudouh
- Université de Lorraine, UMR 7036 (UL-CNRS) CRM2, BP 70239 Boulevard des Aiguillettes, F 54506Vandœuvre-lès-Nancy, France
| | - Nicolas Claiser
- Université de Lorraine, UMR 7036 (UL-CNRS) CRM2, BP 70239 Boulevard des Aiguillettes, F 54506Vandœuvre-lès-Nancy, France
| | - Éric Furet
- ENSCR, UMR 6226 (UL-CNRS) École Nationale Supérieure de Chimie de Rennes, Campus de Beaulieu - Bâtiment 10B, F 35042Rennes Cedex, France
| | - Thierry Guizouarn
- ISCR, UMR 6226 (UL-CNRS) Université de Rennes 1, Campus de Beaulieu - Bâtiment 10B, F 35042Rennes Cedex, France
| | - Laurent Le Pollès
- ENSCR, UMR 6226 (UL-CNRS) École Nationale Supérieure de Chimie de Rennes, Campus de Beaulieu - Bâtiment 10B, F 35042Rennes Cedex, France
| | - Gwendal Kervern
- Université de Lorraine, UMR 7036 (UL-CNRS) CRM2, BP 70239 Boulevard des Aiguillettes, F 54506Vandœuvre-lès-Nancy, France
| |
Collapse
|
3
|
De S, Flambard A, Xu B, Chamoreau L, Gontard G, Lisnard L, Li Y, Boillot M, Lescouëzec R. Molecular Magnetic Materials Based on {Co
III
(Tp*)(CN)
3
}
−
Cyanidometallate: Combined Magnetic, Structural and
59
Co NMR Study. Chemistry 2022; 28:e202200783. [PMID: 35716039 PMCID: PMC9543823 DOI: 10.1002/chem.202200783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The cyanidocobaltate of formula fac‐PPh4[CoIII(Me2Tp)(CN)3] ⋅ CH3CN (1) has been used as a metalloligand to prepare polynuclear magnetic complexes (Me2Tp=hydrotris(3,5‐dimethylpyrazol‐1‐yl)borate). The association of 1 with in situ prepared [FeII(bik)2(MeCN)2](OTf)2 (bik=bis(1‐methylimidazol‐2‐yl)ketone) leads to a molecular square of formula {[CoIII{(Me2Tp)}(CN)3]2[FeII(bik)2]2}(OTf)2 ⋅ 4MeCN ⋅ 2H2O (2), whereas the self‐assembly of 1 with preformed cluster [CoII2(OH2)(piv)4(Hpiv)4] in MeCN leads to the two‐dimensional network of formula {[CoII2(piv)3]2[CoIII(Me2Tp)(CN)3]2 ⋅ 2CH3CN}∞ (3). These compounds were structurally characterized via single crystal X‐ray analysis and their spectroscopic (FTIR, UV‐Vis and 59Co NMR) properties and magnetic behaviours were also investigated. Bulk magnetic susceptibility measurements reveal that 1 is diamagnetic and 3 is paramagnetic throughout the explored temperature range, whereas 2 exhibits sharp spin transition centered at ca. 292 K. Compound 2 also exhibits photomagnetic effects at low temperature, selective light irradiations allowing to promote reversibly and repeatedly low‐spin⇔high‐spin conversion. Besides, the diamagnetic nature of the Co(III) building block allows us studying these compounds by means of 59Co NMR spectroscopy. Herein, a 59Co chemical shift has been used as a magnetic probe to corroborate experimental magnetic data obtained from bulk magnetic susceptibility measurements. An influence of the magnetic state of the neighbouring atoms is observed on the 59Co NMR signals. Moreover, for the very first time, 59Co NMR technique has been successfully introduced to investigate molecular materials with distinct magnetic properties.
Collapse
Affiliation(s)
- Siddhartha De
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Alexandrine Flambard
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Buqin Xu
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Lise‐Marie Chamoreau
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Geoffrey Gontard
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Laurent Lisnard
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Marie‐Laure Boillot
- Institut Chimie Moléculaire et Matériaux d'Orsay UMR CNRS 8182 Université Paris-Saclay, CNRS 91405 Orsay France
| | - Rodrigue Lescouëzec
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| |
Collapse
|
4
|
Polarized Neutron Diffraction: An Excellent Tool to Evidence the Magnetic Anisotropy—Structural Relationships in Molecules. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7120158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This publication reviews recent advances in polarized neutron diffraction (PND) studies of magnetic anisotropy in coordination compounds comprising d or f elements and having different nuclearities. All these studies illustrate the extent to which PND can provide precise and direct information on the relationship between molecular structure and the shape and axes of magnetic anisotropy of the individual metal sites. It makes this experimental technique (PND) an excellent tool to help in the design of molecular-based magnets and especially single-molecule magnets for which strong uniaxial magnetic anisotropy is required.
Collapse
|
5
|
Amoza M, Maxwell L, Aliaga‐Alcalde N, Gómez‐Coca S, Ruiz E. Spin-Phonon Coupling and Slow-Magnetic Relaxation in Pristine Ferrocenium. Chemistry 2021; 27:16440-16447. [PMID: 34582589 PMCID: PMC9298439 DOI: 10.1002/chem.202102603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 01/23/2023]
Abstract
We report the spin dynamic properties of non-substituted ferrocenium complexes. Ferrocenium shows a field-induced single-molecule magnet behaviour in DMF solution while cobaltocene lacks slow spin relaxation neither in powder nor in solution. Multireference quantum mechanical calculations give a non-Aufbau orbital occupation for ferrocenium with small first excitation energy that agrees with the relatively large measured magnetic anisotropy for a transition metal S=1/2 system. The analysis of the spin relaxation shows an important participation of quantum tunnelling, Raman, direct and local-mode mechanisms which depend on temperature and the external field conditions. The calculation of spin-phonon coupling constants for the vibrational modes shows that the first vibrational mode, despite having a low spin-phonon constant, is the most efficient process for the spin relaxation at low temperatures. In such conditions, vibrational modes with higher spin-phonon coupling constants are not populated. Additionally, the vibrational energy of this first mode is in excellent agreement with the experimental fitted value obtained from the local-mode mechanism.
Collapse
Affiliation(s)
- Martín Amoza
- Departament de Química Inorgànica i Orgànica andInstitut de Recerca de Química Teòrica i ComputacionalUniversitat de BarcelonaDiagonal 64508028BarcelonaSpain
| | - Lindley Maxwell
- Departament de Química Inorgànica i Orgànica andInstitut de Recerca de Química Teòrica i ComputacionalUniversitat de BarcelonaDiagonal 64508028BarcelonaSpain
- Advanced Lithium and Industrial Minerals Research CenterUniversidad de AntofagastaAv. Universidad de Antofagasta02800AntofagastaChile
| | - Núria Aliaga‐Alcalde
- ICREA, Institució Catalana de Recerca i Estudis AvançatsPasseig, Passeig Lluis Companys 2308010BarcelonaSpain
- Institut de Ciència de Materials de Barcelona ICMAB-CSIC, Campus UAB08193BellaterraCataloniaSpain
| | - Silvia Gómez‐Coca
- Departament de Química Inorgànica i Orgànica andInstitut de Recerca de Química Teòrica i ComputacionalUniversitat de BarcelonaDiagonal 64508028BarcelonaSpain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica andInstitut de Recerca de Química Teòrica i ComputacionalUniversitat de BarcelonaDiagonal 64508028BarcelonaSpain
| |
Collapse
|
6
|
Rath NP, Holmes SM. Structure-property studies of a new {FeIII2MnII} complex. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Gendron F, Di Pietro S, Abad Galán L, Riobé F, Placide V, Guy L, Zinna F, Di Bari L, Bensalah-Ledoux A, Guyot Y, Pilet G, Pointillart F, Baguenard B, Guy S, Cador O, Maury O, Le Guennic B. Luminescence, chiroptical, magnetic and ab initio crystal-field characterizations of an enantiopure helicoidal Yb(iii) complex. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01194k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The electronic structure of a chiral Yb(iii)-based complex is fully determined by taking advantage of experimental magnetic, luminescence, and chiroptical (NIR-ECD and CPL) characterizations in combination with ab initio wavefunction calculations.
Collapse
|
8
|
Mattei CA, Montigaud V, Gendron F, Denis-Quanquin S, Dorcet V, Giraud N, Riobé F, Argouarch G, Maury O, Le Guennic B, Cador O, Lalli C, Pointillart F. Solid-state versus solution investigation of a luminescent chiral BINOL-derived bisphosphate single-molecule magnet. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01192d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantiopure coordination polymer [Dy(hfac)3((S/R)-L)]n ([(S/R)-1]n) involving a BINOL-derived bisphosphate ligand (S/R)-L is investigated both in solution and solid-state.
Collapse
|