1
|
Reider AM, Szalay M, Reichegger J, Barabás J, Schmidt M, Kappe M, Höltzl T, Scheier P, Lushchikova OV. Spectroscopic investigation of size-dependent CO 2 binding on cationic copper clusters: analysis of the CO 2 asymmetric stretch. Phys Chem Chem Phys 2024; 26:20355-20364. [PMID: 39015096 PMCID: PMC11290062 DOI: 10.1039/d4cp01797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Photofragmentation spectroscopy, combined with quantum chemical computations, was employed to investigate the position of the asymmetric CO2 stretch in cold, He-tagged Cun[CO2]+ (n = 1-10) and Cun[CO2][H2O]+ (n = 1-7) complexes. A blue shift in the band position was observed compared to the free CO2 molecule for Cun[CO2]+ complexes. Furthermore, this shift was found to exhibit a notable dependence on cluster size, progressively redshifting with increasing cluster size. The computations revealed that the CO2 binding energy is the highest for Cu+ and continuously decreases with increasing cluster size. This dependency could be explained by highlighting the role of polarization in electronic structure, according to energy decomposition analysis. The introduction of water to this complex amplified the redshift of the asymmetric stretch, showing a similar dependency on the cluster size as observed for Cun[CO2]+ complexes.
Collapse
Affiliation(s)
- A M Reider
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - M Szalay
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
- Furukawa Electric Institute of Technology, Késmárk Utca 28/A, Budapest 1158, Hungary
| | - J Reichegger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - J Barabás
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
| | - M Schmidt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - M Kappe
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - T Höltzl
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
- Furukawa Electric Institute of Technology, Késmárk Utca 28/A, Budapest 1158, Hungary
| | - P Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - O V Lushchikova
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| |
Collapse
|
2
|
Watson PD, Meizyte G, Pearcy PAJ, Brewer EI, Green AE, Robertson C, Paterson MJ, Mackenzie SR. Infrared spectra and fragmentation dynamics of isotopologue-selective mixed-ligand complexes. Phys Chem Chem Phys 2024; 26:16589-16596. [PMID: 38814318 DOI: 10.1039/d4cp00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Isolated mixed-ligand complexes provide tractable model systems in which to study competitive and cooperative binding effects as well as controlled energy flow. Here, we report spectroscopic and isotopologue-selective infrared photofragmentation dynamics of mixed gas-phase Au(12/13CO)n(N2O)m+ complexes. The rich infrared action spectra, which are reproduced well using simulations of calculated lowest energy structures, clarify previous ambiguities in the assignment of vibrational bands, especially accidental coincidence of CO and N2O bands. The fragmentation dynamics exhibit the same unexpected behaviour as reported previously in which, once CO loss channels are energetically accessible, these dominate the fragmentation branching ratios, despite the much lower binding energy of N2O. We have investigated the dynamics computationally by considering anharmonic couplings between a relevant subset of normal modes involving both ligand stretch and intermolecular modes. Discrepancies between correlated and uncorrelated model fit to the ab initio potential energy curves are quantified using a Boltzmann sampled root mean squared deviation providing insight into efficiency of vibrational energy transfer between high frequency ligand stretches and the softer intermolecular modes which break during fragmentation.
Collapse
Affiliation(s)
- Peter D Watson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Gabriele Meizyte
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Philip A J Pearcy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Edward I Brewer
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Alice E Green
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Christopher Robertson
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK
| | - Martin J Paterson
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
3
|
Green AE, Brown RH, Meizyte G, Mackenzie SR. Spectroscopy and Infrared Photofragmentation Dynamics of Mixed Ligand Ion-Molecule Complexes: Au(CO) x(N 2O) y. J Phys Chem A 2021; 125:7266-7277. [PMID: 34433267 DOI: 10.1021/acs.jpca.1c05800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a combined experimental and computational study of the structure and fragmentation dynamics of mixed ligand gas-phase ion-molecule complexes. Specifically, we have studied the infrared spectroscopy and vibrationally induced photofragmentation dynamics of mass-selected Au(CO)x(N2O)y+ complexes. The structures can be understood on the basis of local CO and N2O chromophores in different solvation shells with CO found preferentially in the core. Rich fragmentation dynamics are observed as a function of complex composition and the vibrational mode excited. The dynamics are characterized in terms of branching ratios for different ligand loss channels in light of calculated internal energy distributions. Intramolecular vibrational redistribution appears to be rapid, and dissociation is observed into all energetically accessible channels with little or no evidence for preferential breaking of the weakest intermolecular interactions.
Collapse
Affiliation(s)
- Alice E Green
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Rachael H Brown
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Gabriele Meizyte
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Stuart R Mackenzie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| |
Collapse
|
4
|
Asymmetric Solvation of the Zinc Dimer Cation Revealed by Infrared Multiple Photon Dissociation Spectroscopy of Zn 2+(H 2O) n ( n = 1-20). Int J Mol Sci 2021; 22:ijms22116026. [PMID: 34199627 PMCID: PMC8199724 DOI: 10.3390/ijms22116026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Investigating metal-ion solvation—in particular, the fundamental binding interactions—enhances the understanding of many processes, including hydrogen production via catalysis at metal centers and metal corrosion. Infrared spectra of the hydrated zinc dimer (Zn2+(H2O)n; n = 1–20) were measured in the O–H stretching region, using infrared multiple photon dissociation (IRMPD) spectroscopy. These spectra were then compared with those calculated by using density functional theory. For all cluster sizes, calculated structures adopting asymmetric solvation to one Zn atom in the dimer were found to lie lower in energy than structures adopting symmetric solvation to both Zn atoms. Combining experiment and theory, the spectra show that water molecules preferentially bind to one Zn atom, adopting water binding motifs similar to the Zn+(H2O)n complexes studied previously. A lower coordination number of 2 was observed for Zn2+(H2O)3, evident from the highly red-shifted band in the hydrogen bonding region. Photodissociation leading to loss of a neutral Zn atom was observed only for n = 3, attributed to a particularly low calculated Zn binding energy for this cluster size.
Collapse
|
5
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Spectroscopy and photochemistry of copper nitrate clusters. Phys Chem Chem Phys 2021; 23:9911-9920. [PMID: 33908510 DOI: 10.1039/d1cp00629k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation of copper nitrate cluster anions Cu(ii)n(NO3)2n+1-, n ≤ 4, in the gas phase using ultraviolet/visible/near-infrared (UV/vis/NIR) spectroscopy provides detailed insight into the electronic structure of the copper salt and its intriguing photochemistry. In the experimentally studied region up to 5.5 eV, the spectra of copper(ii) nitrate exhibit a 3d-3d band in the vis/NIR and well-separated bands in the UV. The latter bands originate from Ligand-to-Metal Charge Transfer (LMCT) as well as n-π* transitions in the nitrate ligands. The clusters predominantly decompose by loss of neutral copper nitrate in the electronic ground state after internal conversion or via the photochemical loss of a neutral NO3 ligand after a LMCT. These two decomposition channels are in direct competition on the ground state potential energy surface for the smallest copper nitrate cluster, Cu(ii)(NO3)3-. Here, copper nitrate evaporation is thermochemically less favorable. Population of π* orbitals in the nitrate ligands may lead to N-O bond photolysis. This is observed in the UV region with a small quantum efficiency, with photochemical loss of either nitrogen dioxide or an oxygen atom.
Collapse
Affiliation(s)
- Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
6
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Infrared multiple photon dissociation spectroscopy of anionic copper formate clusters. J Chem Phys 2020; 153:184301. [DOI: 10.1063/5.0030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Bersenkowitsch NK, Ončák M, Heller J, Pascher TF, van der Linde C, Beyer MK. Evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters. Phys Chem Chem Phys 2020; 22:12028-12038. [PMID: 32421138 PMCID: PMC7116335 DOI: 10.1039/d0cp00272k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction mechanisms of organic molecules in a salt environment are of
fundamental interest and are potentially relevant for atmospheric chemistry, in
particular sea-salt aerosols. Here, we found evidence for lactone formation upon
infrared multiple photon dissociation (IRMPD) of non-covalent bromoalkanoate
complexes as well as bromoalkanoate embedded in sodium iodide clusters. The
mechanism of lactone formation from bromoalkanoates of different chain lengths
is studied in the gas phase with and without salt environment by a combination
of IRMPD and quantum chemical calculations. IRMPD spectra are recorded in the
833-3846 cmT1 range by
irradiating the clusters with tunable laser systems while they are stored in the
cell of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer.
The measurements of the binary complex
Br(CH2)mCOOH·Br(CH2)mCOO- for
m = 4 indicate valerolactone formation without salt
environment while lactone formation is hindered for longer chain lengths. When
embedded in sodium iodide clusters, butyrolactone formation from 4-bromobutyrate
seems to take place already during formation of the doped clusters in the
electrospray process, evidenced by the infrared (IR) signature of the lactone.
In contrast, IRMPD spectra of sodium iodide clusters containing 5-bromovalerate
contain signatures for both valerate as well as valerolactone. In both cases,
however, a neutral fragment corresponding to the mass of valerolactone is
eliminated, indicating that ring formation can be activated by IR light in the
salt cluster. Quantum chemical calculations show that already complexation with
one sodium ion significantly increases the barrier for lactone formation for all
chain lengths. IRMPD of sodium iodide clusters doped with neutral bromoalkanoic
acid molecules proceeds by elimination of HI or desorption of the intact acid
molecule from the cluster.
Collapse
Affiliation(s)
- Nina K Bersenkowitsch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Jakob Heller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Barwa E, Pascher TF, Ončák M, Linde C, Beyer MK. Aktivierung von Kohlenstoffdioxid an Metallzentren: Entwicklung des Ladungstransfers von Mg
.+
auf CO
2
in [MgCO
2
(H
2
O)
n
]
.+
,
n=
0–8. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Christian Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| |
Collapse
|
9
|
Jestilä JS, Denton JK, Perez EH, Khuu T, Aprà E, Xantheas SS, Johnson MA, Uggerud E. Characterization of the alkali metal oxalates (MC 2O 4-) and their formation by CO 2 reduction via the alkali metal carbonites (MCO 2-). Phys Chem Chem Phys 2020; 22:7460-7473. [PMID: 32219243 DOI: 10.1039/d0cp00547a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of carbon dioxide to oxalate has been studied by experimental Collisionally Induced Dissociation (CID) and vibrational characterization of the alkali metal oxalates, supplemented by theoretical electronic structure calculations. The critical step in the reductive process is the coordination of CO2 to an alkali metal anion, forming a metal carbonite MCO2- able to subsequently receive a second CO2 molecule. While the energetic demand for these reactions is generally low, we find that the degree of activation of CO2 in terms of charge transfer and transition state energies is the highest for lithium and systematically decreases down the group (M = Li-Cs). This is correlated to the strength of the binding interaction between the alkali metal and CO2, which can be related to the structure of the oxalate moiety within the product metal complexes evolving from a planar to a staggered conformer with increasing atomic number of the interacting metal. Similar structural changes are observed for crystalline alkali metal oxalates, although the C2O42- moiety is in general more planar in these, a fact that is attributed to the increased number of interacting alkali metal cations compared to the gas-phase ions.
Collapse
Affiliation(s)
- Joakim S Jestilä
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0135, Norway.
| | - Joanna K Denton
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Evan H Perez
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington, USA and Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Einar Uggerud
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0135, Norway.
| |
Collapse
|
10
|
Barwa E, Pascher TF, Ončák M, van der Linde C, Beyer MK. Carbon Dioxide Activation at Metal Centers: Evolution of Charge Transfer from Mg .+ to CO 2 in [MgCO 2 (H 2 O) n ] .+ , n=0-8. Angew Chem Int Ed Engl 2020; 59:7467-7471. [PMID: 32100953 PMCID: PMC7217156 DOI: 10.1002/anie.202001292] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Indexed: 11/06/2022]
Abstract
We investigate activation of carbon dioxide by singly charged hydrated magnesium cations Mg .+(H2O)n, through infrared multiple photon dissociation (IRMPD) spectroscopy combined with quantum chemical calculations. The spectra of [MgCO2(H2O)n].+ in the 1250–4000 cm−1 region show a sharp transition from n=2 to n=3 for the position of the CO2 antisymmetric stretching mode. This is evidence for the activation of CO2 via charge transfer from Mg .+ to CO2 for n≥3, while smaller clusters feature linear CO2 coordinated end‐on to the metal center. Starting with n=5, we see a further conformational change, with CO2.− coordination to Mg2+ gradually shifting from bidentate to monodentate, consistent with preferential hexa‐coordination of Mg2+. Our results reveal in detail how hydration promotes CO2 activation by charge transfer at metal centers.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
11
|
Barwa E, Ončák M, Pascher TF, Herburger A, van der Linde C, Beyer MK. Infrared Multiple Photon Dissociation Spectroscopy of Hydrated Cobalt Anions Doped with Carbon Dioxide CoCO 2 (H 2 O) n - , n=1-10, in the C-O Stretch Region. Chemistry 2020; 26:1074-1081. [PMID: 31617628 PMCID: PMC7051846 DOI: 10.1002/chem.201904182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 11/05/2022]
Abstract
We investigate anionic [Co,CO2 ,nH2 O]- clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250-2234 cm-1 using an FT-ICR mass spectrometer. We show that both CO2 and H2 O are activated in a significant fraction of the [Co,CO2 ,H2 O]- clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C-O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C-O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2 - . However, calculations find Co(HCOO)(OH)- as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590-1730 cm-1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH)- . Upon additional hydration, all species [Co,CO2 ,nH2 O]- , n≥2, undergo IRMPD through loss of H2 O molecules as a relatively weakly bound messenger. The main spectral features are the C-O stretching mode of the CO ligand around 1900 cm-1 , the water bending mode mixed with the antisymmetric C-O stretching mode of the HCOO- ligand around 1580-1730 cm-1 , and the symmetric C-O stretching mode of the HCOO- ligand around 1300 cm-1 . A weak feature above 2000 cm-1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Andreas Herburger
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|