1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Chen Y, Zhu S. Recent advances in metal carbene-induced semipinacol rearrangements. Chem Commun (Camb) 2024; 60:11253-11266. [PMID: 39258409 DOI: 10.1039/d4cc03252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
As has been well-recognized, the semipinacol rearrangements (SPRs) function as a powerful and versatile tool for the construction of all-carbon and heteroatom-containing quaternary stereocenters, which are present in various natural products and bioactive molecules. In recent years, considerable attention has been paid to exploring the metal carbene-induced semipinacol rearrangements, providing an attractive and powerful strategy for obtaining various important carbonyl compounds. However, to date, no review has been published that summarizes the significant advances in the preparation of functionalized carbonyl compounds using these migration rearrangement reactions. In this review article, we have summarised the recent advances in the field of metal carbene-induced SPR reactions according to different metal classifications. Mechanistic insights, synthetic applications, and their limitations are discussed. The challenges and opportunities in this field are also outlined.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Empel C, Fetzer MNA, Sasmal S, Strothmann T, Janiak C, Koenigs RM. Unlocking catalytic potential: a rhodium(II)-based coordination polymer for efficient carbene transfer reactions with donor/acceptor diazoalkanes. Chem Commun (Camb) 2024; 60:7327-7330. [PMID: 38913109 DOI: 10.1039/d4cc01386g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Herein, we report the use of a molecular-defined rhodium(II) coordination polymer (Rh-CP) as a heterogeneous, recyclable catalyst in carbene transfer reactions. We showcase the application of this heterogeneous catalyst in a range of carbene transfer reactions and conclude with the functionalization of natural products and drug molecules.
Collapse
Affiliation(s)
- Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Marcus N A Fetzer
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Suman Sasmal
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Till Strothmann
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
4
|
Peeters M, Decaens J, Fürstner A. Taming of Furfurylidenes by Chiral Bismuth-Rhodium Paddlewheel Catalysts. Preparation and Functionalization of Optically Active 1,1-Disubstituted (Trifluoromethyl)cyclopropanes. Angew Chem Int Ed Engl 2023; 62:e202311598. [PMID: 37698240 DOI: 10.1002/anie.202311598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Although 2-furyl-carbenes (furfurylidenes) are prone to instantaneous electrocyclic ring opening, chiral [BiRh]-paddlewheel complexes empowered by London dispersion allow (trifluoromethyl)furfurylidene metal complexes to be generated from a bench-stable triftosylhydrazone precursor. These reactive intermediates engage in asymmetric [2+1] cycloadditions and hence open entry into valuable trifluoromethylated cyclopropane or -cyclopropene derivatives in optically active form, which are important building blocks for medicinal chemistry but difficult to make otherwise.
Collapse
Affiliation(s)
- Matthias Peeters
- Max-Planck-Institut für Kohlenforschung, 45470, RuhrMülheim/Ruhr, Germany
| | - Jonathan Decaens
- Max-Planck-Institut für Kohlenforschung, 45470, RuhrMülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, RuhrMülheim/Ruhr, Germany
| |
Collapse
|
5
|
Myronova V, Cahard D, Marek I. Stereoselective Preparation of CF 3-Containing Cyclopropanes. Org Lett 2022; 24:9076-9080. [DOI: 10.1021/acs.orglett.2c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Veronika Myronova
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry. Technion - Israel Institute of Technology, Haifa 3200009, Israel
- UMR 6014 CNRS COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Dominique Cahard
- UMR 6014 CNRS COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry. Technion - Israel Institute of Technology, Haifa 3200009, Israel
| |
Collapse
|
6
|
Rigoulet M, Vesseur D, Miqueu K, Bourissou D. Gold(I) α-Trifluoromethyl Carbenes: Synthesis, Characterization and Reactivity Studies. Angew Chem Int Ed Engl 2022; 61:e202204781. [PMID: 35466483 PMCID: PMC9323441 DOI: 10.1002/anie.202204781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Aryl trifluoromethyl diazomethanes 2-R (R=Ph, OMe, CF3 ) are readily decomposed by the (o-carboranyl)diphosphine gold(I) complex 1. The resulting α-CF3 substituted carbene complexes 3-R have been characterized by multi-nuclear NMR spectroscopy as well as X-ray crystallography (for 3-Ph). The bonding situation was thoroughly assessed by computational means, showing stabilization of the electrophilic carbene center by π-donation from the aryl substituent and backdonation from Au, as enhanced by the chelating P^P ligand. Reactivity studies under stoichiometric and catalytic conditions substantiate typical carbene-type behavior for 3-Ph.
Collapse
Affiliation(s)
- Mathilde Rigoulet
- CNRS/Université Paul Sabatier, Laboratoire HétérochimieFondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| | - David Vesseur
- CNRS/Université Paul Sabatier, Laboratoire HétérochimieFondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPAInstitut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254)Hélioparc, 2 Avenue du Président Angot64053Pau Cedex 09France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire HétérochimieFondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| |
Collapse
|
7
|
Zhang C. Application of Aromatic Substituted 2,2,2-Trifluoro Diazoethanes in Organic Reactions. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220516113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
This review provides an overview of metal-, nonmetal-, light-, or catalyst free-promoting reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with organic molecules for the synthesis of trifluoromethyl-substituted compounds. Several approaches will be reviewed and divided into (i) copper-, iron-, Trop(BF4)-, B(C6F5)3-, light-, or rhodium-promoted reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with silanes, amines, mercaptans, phosphonates, p-cyanophenol, benzoic acid, diphenylphosphinic acid, boranes and nBu3SnH, (ii) rhodium-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with amides and phenylhydroxylamine, (iii) copper-, rhodium-, silver-, and light-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with alkynes, (iv) palladium-, copper-, rhodium- and iron-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with alkenes, (v) BF3·OEt2-, copper-, tin- or TBAB-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with HF·Py, (difluoroiodo)toluene (p-TolIF2), TMSCF3, AgSCF3, TMSCF2Br or 1,3-dicarbonyl compounds, (vi) palladium-, copper-, gold/silver- or rhodium-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with indoles, benzene compounds or pyridines, and (vii) palladium-catalyzed reaction of aromatic substituted 2,2,2-trifluoro diazoethanes with benzyl or allyl bromides.
Collapse
Affiliation(s)
- Cai Zhang
- Department of safety supervision and management, Chongqing Vocational Institute of Safety Technology, Wanzhou District, Chongqing, People’s Republic of China
| |
Collapse
|
8
|
Wang Q, Liu J, Wang N, Pajkert R, Mei H, Röschenthaler G, Han J. One‐Pot Reaction of (β‐Amino‐α,α‐difluoroethyl)phosphonates with Trifluoromethylated Ketones via Aza‐Wittig Reagents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
9
|
Gold(I) α‐Trifluoromethyl Carbenes: Synthesis, Characterization and Reactivity Studies. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Liu J, Pajkert R, Wang L, Mei H, Röschenthaler GV, Han J. Facile synthesis of (β-chlorodifluoroethyl)phosphonates via chlorination reaction of difluoroalkyl diazo derivatives with HCl. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Ollevier T, Carreras V. Emerging Applications of Aryl Trifluoromethyl Diazoalkanes and Diazirines in Synthetic Transformations. ACS ORGANIC & INORGANIC AU 2022; 2:83-98. [PMID: 36855460 PMCID: PMC9954246 DOI: 10.1021/acsorginorgau.1c00027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aryl trifluoromethyl diazoalkanes and diazirines have become unique as reactants in synthetic methodology. As privileged compounds containing CF3 groups and ease of synthetic access, aryl trifluoromethyl diazoalkanes and diazirines have been highlighted for their versatility in applications toward a wide range of synthetic transformations. This Perspective highlights the synthetic applications of these reactants as precursors of stabilized metal carbenes, i.e., donor-acceptor-substituted ones.
Collapse
|
12
|
Zhang X, Sivaguru P, Zanoni G, Han X, Tong M, Bi X. Catalytic Asymmetric C(sp 3)–H Carbene Insertion Approach to Access Enantioenriched 3-Fluoroalkyl 2,3-Dihydrobenzofurans. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Xinyue Han
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Minghui Tong
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Tanbouza N, Carreras V, Ollevier T. Photochemical Cyclopropenation of Alkynes with Diazirines as Carbene Precursors in Continuous Flow. Org Lett 2021; 23:5420-5424. [PMID: 34228924 DOI: 10.1021/acs.orglett.1c01750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient synthesis of 3-trifluoromethyl-3-aryl-cyclopropenes via the cyclopropenation reaction of alkynes with photolytically generated carbenes from diazirine compounds is described. This reaction is performed in continuous flow using readily available LEDs under mild reaction conditions. This new and efficient method describes the synthesis of 25 examples of 3-trifluoromethyl-3-aryl-cyclopropenes with yields up to 97%, achieved in continuous flow with a 5 min residence time. Control experiments highlighted that diazirines are more efficient than diazo compounds for this transformation.
Collapse
Affiliation(s)
- Nour Tanbouza
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Virginie Carreras
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Thierry Ollevier
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Zhang X, Tian C, Wang Z, Sivaguru P, Nolan SP, Bi X. Fluoroalkyl N-Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Chunqi Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhanjing Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Tan P, Wang H, Wang SR. Nucleophilic Migratory Cyclopropenation of Activated Alkynes: A Nonmetal Approach to Unbiased Cyclopropenes. Org Lett 2021; 23:2590-2594. [PMID: 33754741 DOI: 10.1021/acs.orglett.1c00498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An unprecedented reductive [2 + 1] annulation of α-keto esters with alkynones mediated by P(NMe2)3 is described. Although this nonmetal cyclopropenation is a nucleophilic process, attributed to the ester migration via a formal [2 + 2] cycloaddition reaction of Kukhtin-Ramirez adducts and alkynones followed by a fragmentation, cyclopropenes with an unbiased alkene scaffold are formed in good to excellent yields, thus providing a promising complementarity to electrophilic metal-catalyzed cyclopropenation.
Collapse
Affiliation(s)
- Pengwei Tan
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China
| | - Haoran Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China
| | - Sunewang R Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Lu, Shanghai 200062, China
| |
Collapse
|
16
|
Decaens J, Couve-Bonnaire S, Charette AB, Poisson T, Jubault P. Synthesis of Fluoro-, Monofluoromethyl-, Difluoromethyl-, and Trifluoromethyl-Substituted Three-Membered Rings. Chemistry 2021; 27:2935-2962. [PMID: 32939868 DOI: 10.1002/chem.202003822] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/13/2022]
Abstract
This Minireview describes recent advances toward the synthesis of fluoro-, monofluoromethyl-, difluoromethyl-, and trifluoromethyl-substituted three-membered rings such as cyclopropanes, aziridines, epoxides, episulfides, cyclopropenes, and 2 H-azirines. The main synthetic methodologies since 2016 for cyclopropanes and since 2010 for the other three-membered rings are reported.
Collapse
Affiliation(s)
- Jonathan Decaens
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France
| | | | - André B Charette
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal, PO Box 6128, Station Downtown, Montréal, Québec, H3C 3J7, Canada
| | - Thomas Poisson
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris, France
| | - Philippe Jubault
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France
| |
Collapse
|
17
|
Mei H, Wang L, Pajkert R, Wang Q, Xu J, Liu J, Röschenthaler GV, Han J. In Situ Generation of Unstable Difluoromethylphosphonate-Containing Diazoalkanes and Their Use in [3 + 2] Cycloaddition Reactions with Vinyl Sulfones. Org Lett 2021; 23:1130-1134. [PMID: 33480704 DOI: 10.1021/acs.orglett.1c00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A [3 + 2] cycloaddition reaction of unstable difluoromethylphosphonate-containing diazoalkanes with vinyl sulfones under simple reaction conditions is developed, which provides an efficient route toward functionalized fluorinated pyrazolines derivatives in good chemical yields. The difluoro diazoalkanes are generated in situ using t-BuONO for the diazotization of (β-amino-α,α-difluoroethyl)phosphonates, and their stabilities and reactivities were carefully investigated.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Qian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingcheng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gerd-Volker Röschenthaler
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Jana S, Empel C, Nguyen TV, Koenigs RM. Multi C-H Functionalization Reactions of Carbazole Heterocycles via Gold-Catalyzed Carbene Transfer Reactions. Chemistry 2021; 27:2628-2632. [PMID: 33278310 PMCID: PMC7898811 DOI: 10.1002/chem.202004724] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Indexed: 01/29/2023]
Abstract
Herein we describe a multiple C-H functionalization reaction of carbazole heterocycles with diazoalkanes. We show that gold catalysts play a distinct role in enabling a multiple C-H functionalization reaction to introduce up to six carbene fragments onto molecules containing multiple carbazole units or to link multiple carbazole units into a single molecule. A one-pot stepwise approach enables the introduction of two different carbene fragments to allow orthogonal deprotection and straightforward derivatization.
Collapse
Affiliation(s)
- Sripati Jana
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Claire Empel
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
- School of ChemistryUniversity of New South Wales2052SydneyAustralia
| | | | - Rene M. Koenigs
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
- School of ChemistryUniversity of New South Wales2052SydneyAustralia
| |
Collapse
|
19
|
Liu J, Xu J, Pajkert R, Mei H, Röschenthaler GV, Han J. Esterification of Carboxylic Acids with (β-Diazo-α,α-difluoroethyl)phosphonates under Photochemical Conditions. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Abstract
Treatment of bis(pyrazolyl)borate ligand supported [(CF3)2Bp]Cu(NCMe) with 1,2,3-trisubstituted cyclopropenes produced thermally stable copper(I) η2-cyclopropene complexes amenable to detailed solution and solid-state analysis. The [(CF3)2Bp]Cu(NCMe) also catalyzed [2 + 1]-cycloaddition chemistry of terminal and internal alkynes with ethyl diazoacetate affording cyclopropenes, including those used as ligands in this work. The tris(pyrazolyl)borate [(CF3)2Tp]Cu(NCMe) is a competent catalyst for this process as well. The treatment of [(CF3)2Tp]Cu with ethyl 2,3-diethylcycloprop-2-enecarboxylate substrate gave an O-bonded rather than a η2-cyclopropene copper complex.
Collapse
Affiliation(s)
- Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Shawn G Ridlen
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
21
|
Wertz B, Ren Z, Bacsa J, Musaev DG, Davies HML. Comparison of 1,2-Diarylcyclopropanecarboxylates with 1,2,2-Triarylcyclopropanecarboxylates as Chiral Ligands for Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization. J Org Chem 2020; 85:12199-12211. [PMID: 32803966 DOI: 10.1021/acs.joc.0c01276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dirhodium triarylcyclopropanecarboxylate catalysts (Rh2TPCP4) are sterically demanding and capable of controlling the site selectivity of C-H functionalization by means of C-H insertion with donor/acceptor carbenes. This study compares the structures and reactivity profiles of dirhodium triarylcyclopropanecarboxylates with dirhodium diarylcyclopropanecarboxylates. The absence of the third aryl group makes the catalysts less sterically demanding and lacks a well-defined preferred conformation. The catalysts have a greater tendency for inducing C-H functionalization at tertiary C-H bonds versus their triaryl counterparts but are generally not capable of achieving high levels of asymmetric induction. These studies confirm the critical requirement of having at least three substituents on the cyclopropanecarboxylate ligands to have well-defined sterically demanding catalysts capable of high levels of asymmetric induction.
Collapse
Affiliation(s)
- Benjamin Wertz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, Unites States
| | - Zhi Ren
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, Unites States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, Unites States
| | - Djamaladdin G Musaev
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, Unites States.,Cherry L. Emerson Center for Scientific Computation, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M L Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, Unites States
| |
Collapse
|
22
|
Pei C, Yang Z, Koenigs RM. Synthesis of Trifluoromethylated Tetrasubstituted Allenes via Palladium-Catalyzed Carbene Transfer Reaction. Org Lett 2020; 22:7300-7304. [PMID: 32866017 DOI: 10.1021/acs.orglett.0c02638] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we report on the palladium-catalyzed synthesis of trifluoromethylated, tetrasubstituted allenes from vinyl bromides and trifluoromethylated diazoalkanes in good to excellent yield. This reaction proceeds via oxidative addition of a Pd(0) complex with vinyl bromide. Subsequent base-promoted reductive elimination generates the allene. This methodology provides an efficient strategy even on gram scale to valuable trifluoromethylated, tetrasubstituted allenes under mild reaction conditions. The allene products can be used in acid catalyzed cyclization reactions to give trifluoromethylated indene products.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Zhen Yang
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
23
|
Yang Z, Pei C, Koenigs RM. Access to gem-Difluoro Olefins via C-H Functionalization and Dual Role of Anilines. Org Lett 2020; 22:7234-7238. [PMID: 32866023 DOI: 10.1021/acs.orglett.0c02568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this Letter, we describe a simple, practical approach in which cheap CuI was used as a catalyst to introduce a gem-difluoro olefin onto simple electron-rich aniline derivatives in good yield via direct C-H functionalization and a subsequent HF elimination reaction. Detailed mechanistic studies point at a dual role of aniline derivatives in this reaction, which serve as a substrate and a basic promoter to trigger the HF elimination step.
Collapse
Affiliation(s)
- Zhen Yang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Chao Pei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
24
|
Guo Y, Pei C, Koenigs RM. Substrate‐Controlled Cyclopropanation Reactions of Glycals with Aryl Diazoacetates. ChemCatChem 2020. [DOI: 10.1002/cctc.202000569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yujing Guo
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Chao Pei
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Rene M. Koenigs
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| |
Collapse
|
25
|
Chen GS, Yan XX, Chen SJ, Mao XY, Li ZD, Liu YL. Diastereoselective Synthesis of 1,3-Diyne-Tethered Trifluoromethylcyclopropanes through a Sulfur Ylide Mediated Cyclopropanation/DBU-Mediated Epimerization Sequence. J Org Chem 2020; 85:6252-6260. [PMID: 32298579 DOI: 10.1021/acs.joc.0c00162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A one-pot synthesis of 1,3-diyne-tethered trifluoromethylcyclopropanes starting from 2-CF3-3,5-diyne-1-enes and sulfur ylides via a sulfur ylide mediated cyclopropanation and a DBU-mediated epimerization sequence is described in this work. This process is highly diastereoselective with broad substrate scope. Moreover, a series of synthetic transformations based on the diyne moieties were conducted smoothly, affording cyclopropanes featuring trifluoromethyl-substituted all-carbon quaternary centers.
Collapse
Affiliation(s)
- Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Xiao-Xue Yan
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P.R. China
| | - Xiang-Yu Mao
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Zhao-Dong Li
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| |
Collapse
|
26
|
Yang Z, Möller M, Koenigs RM. Synthesis of gem-Difluoro Olefins through C-H Functionalization and β-fluoride Elimination Reactions. Angew Chem Int Ed Engl 2020; 59:5572-5576. [PMID: 31885145 PMCID: PMC7155031 DOI: 10.1002/anie.201915500] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 12/23/2022]
Abstract
A palladium catalyzed C-H functionalization and consecutive β-fluoride elimination reaction between indole heterocycles and fluorinated diazoalkanes is reported. This approach provides for the first time a facile method for the rapid synthesis of gem-difluoro olefins using fluorinated diazoalkanes under mild reaction conditions. Cyclopropanation products were obtained when N-arylated rather than N-alkylated indoles were applied in this reaction. Mechanistic studies reveal the importance of the β-fluoride elimination step in this transformation. This method presents a new concept for the simple and direct transfer of a 1-aryl-(2,2-difluorovinyl) group to access gem-difluoro olefins.
Collapse
Affiliation(s)
- Zhen Yang
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Mieke Möller
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| |
Collapse
|
27
|
Tran UPN, Hommelsheim R, Yang Z, Empel C, Hock KJ, Nguyen TV, Koenigs RM. Catalytic Synthesis of Trifluoromethyl Cyclopropenes and Oligo-Cyclopropenes. Chemistry 2020; 26:1254-1257. [PMID: 31617620 PMCID: PMC7028152 DOI: 10.1002/chem.201904680] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 12/17/2022]
Abstract
The synthesis of trifluoromethylated cyclopropenes is often associated with important applications in drug discovery and functional materials. In this report, we describe the use of readily available chiral rhodium(II) catalysts for a highly efficient asymmetric cyclopropenation reaction of fluorinated donor–acceptor diazoalkanes with a broad variety of aliphatic and aromatic alkynes. Further studies highlight the unique reactivity of fluorinated donor–acceptor diazoalkanes in the synthesis of oligo‐cyclopropenes. Subsequent C−H functionalization of trifluoromethyl cyclopropenes furnishes densely substituted cyclopropene frameworks and also allows the alternative synthesis of bis‐cyclopropenes.
Collapse
Affiliation(s)
- Uyen P N Tran
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Renè Hommelsheim
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Zhen Yang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Katharina J Hock
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thanh V Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - René M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
28
|
Carreras V, Besnard C, Gandon V, Ollevier T. Asymmetric CuI-Catalyzed Insertion Reaction of 1-Aryl-2,2,2-trifluoro-1-diazoethanes into Si–H Bonds. Org Lett 2019; 21:9094-9098. [DOI: 10.1021/acs.orglett.9b03480] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Virginie Carreras
- Département de Chimie, Pavillon Alexandre-Vachon, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Claire Besnard
- Département de Chimie, Pavillon Alexandre-Vachon, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Vincent Gandon
- ICMMO, CNRS UMR 8182, and Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Univ. Paris-Sud, Université Paris-Saclay, bâtiment 420, 91405 Orsay Cedex, France
- Institut Polytechnique de Paris, École Polytechnique, route de Saclay, 91128 Palaiseau Cedex, France
| | - Thierry Ollevier
- Département de Chimie, Pavillon Alexandre-Vachon, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
29
|
Jana S, Yang Z, Pei C, Xu X, Koenigs RM. Photochemical ring expansion reactions: synthesis of tetrahydrofuran derivatives and mechanism studies. Chem Sci 2019; 10:10129-10134. [PMID: 32015819 PMCID: PMC6968735 DOI: 10.1039/c9sc04069b] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 01/15/2023] Open
Abstract
We have shown light mediated ring-expansion reactions of 4-membered ring heterocycles. The reaction proceeds via a diradical mechanism and bond length play a key role in the stereodetermining step.
The reaction mechanism of oxygen and sulfur ylide mediated rearrangements is even today a matter of debate. In this report, we describe ring expansion reactions of oxetane and thietane heterocycles that allow probing the underlying reaction mechanism under metal-free, photochemical conditions. This ring expansion proves highly efficient and allows the synthesis of tetrahydrofuran and thiolane heterocycles under mild and operationally simple reaction conditions. These studies reveal marked differences in the stereoselectivity of the ring expansion of oxygen or sulfur ylides, which were further investigated computationally. DFT calculations show that carbenes react under ylide formation and that the corresponding ring expansion reactions proceed via a diradical pathway. The different bond lengths in free oxygen or sulfur ylide intermediates cause the distinctive stereochemical outcome.
Collapse
Affiliation(s)
- Sripati Jana
- RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany .
| | - Zhen Yang
- RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany .
| | - Chao Pei
- Key Laboratory of Organic Synthesis of Jiangsu Province , College of Chemistry, Chemical Engineering and Materials Science , Suzhou 215123 , China
| | - Xinfang Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province , College of Chemistry, Chemical Engineering and Materials Science , Suzhou 215123 , China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China .
| | - Rene M Koenigs
- RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany .
| |
Collapse
|