1
|
Bariwal J, Van der Eycken E. Harnessing Visible/UV Light for the Activation and/or Functionalization of C-H Bonds: Metal- and Photocatalyst-Free Approach. CHEM REC 2025; 25:e202400227. [PMID: 40072335 DOI: 10.1002/tcr.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/13/2025] [Indexed: 04/13/2025]
Abstract
Photosynthesis in plants has inspired photochemical reactions in organic chemistry. Synthetic organic chemists always seek cost-effective, operationally simple, averting the use of toxic and difficult-to-remove metallic catalysts, atom economical, and high product purity in organic reactions. In the last few decades, the use of light as a catalyst in organic reactions has increased exponentially as literature has exploded with examples, particularly by using toxic and expensive metal complexes, photosensitizers like organic dyes, hypervalent iodine, or by using inorganic semiconductors. In this report, we have selected a few interesting examples of photochemical reactions performed without using any metallic catalyst or photosensitizers. These examples use the inherent potential of reactants to utilize light energy to initiate chemical reactions. Our main emphasis is to highlight the structural features in the reactants that can absorb light energy or form an electron donor-acceptor (EDA) complex during the reaction to initiate the photochemical reaction. Considering the high degree of variability in the photochemical reactions, the utmost care has been taken to present the most accurate reaction conditions. A short introductory section on photochemical reactions will act as an anchor that will revolve around the examples discussed and explain the underlying principle of the photochemical reaction mechanism.
Collapse
Affiliation(s)
- Jitender Bariwal
- University of Leuven, KU Leuven), LOMAC Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Erik Van der Eycken
- University of Leuven, KU Leuven), LOMAC Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Organic Chemistry Department, Peoples' Friendship University of Russia, RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| |
Collapse
|
2
|
Bertus P, Caillé J. Advances in the Synthesis of Cyclopropylamines. Chem Rev 2025; 125:3242-3377. [PMID: 40048498 DOI: 10.1021/acs.chemrev.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Cyclopropylamines are an important subclass of substituted cyclopropanes that combine the unique electronic and steric properties of cyclopropanes with the presence of a donor nitrogen atom. In addition to their presence in a diverse array of biologically active compounds, cyclopropylamines are utilized as important synthetic intermediates, particularly in ring-opening or cycloaddition reactions. Consequently, the synthesis of these compounds has constituted a significant research topic, as evidenced by the abundant published synthetic methods. In addition to the widely used Curtius rearrangement, classical cyclopropanation methods have been adapted to integrate a nitrogen function (Simmons-Smith reaction, metal-catalyzed reaction of diazo compounds on olefins, Michael-initiated ring-closure reactions) with significant advances in enantioselective synthesis. More recently, specific methods have been developed for the preparation of the aminocyclopropane moiety (Kulinkovich reactions applied to amides and nitriles, addition to cyclopropenes, metal-catalyzed reactions involving C-H functionalization, ...). The topic of this review is to present the different methods for the preparation of cyclopropylamine derivatives, with the aim of covering the methodological advances as best as possible, highlighting their scope, their stereochemical aspects and future trends.
Collapse
Affiliation(s)
- Philippe Bertus
- Institut des Molécules et Matériaux du Mans, IMMM, CNRS UMR 6283, Le Mans Université, 72000 Le Mans, France
| | - Julien Caillé
- Institut de Chimie Organique et Analytique, ICOA, CNRS UMR 7311, University of Orléans, 45100 Orléans, France
| |
Collapse
|
3
|
Zhang Y, Li S, Chen H, Song W, Ning Y, Liu Z, Wu Y, Murali K, Sivaguru P, Zhang X. Dimethoxyacetaldehyde- N-triftosylhydrazone: Preparation and Carbene Reactivity in Cyclopropanation and Doyle-Kirmse Reactions. Org Lett 2025; 27:1941-1948. [PMID: 39976213 DOI: 10.1021/acs.orglett.5c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Herein, we developed the new, powerful, and easy-to-handle chemical reagent, dimethoxyacetaldehyde-N-triftosylhydrazone (DMHz-Tfs), as a convenient in situ source of dimethoxydiazoethane under mild conditions. We demonstrate the carbene reactivity of DMHz-Tfs in iron-catalyzed cyclopropanation and Doyle-Kirmse reactions, providing access to diverse acetal functionalized cyclopropanes and homoallylic- and allenyl-sulfides at gram-scale with high stereoselectivity. DFT calculations elucidated the involvement of the most stable doublet spin state iron-carbene intermediate over other possible spin states.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Shuang Li
- Forestry College of Beihua University, Jilin 132013, PR China
| | - Hongzhu Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Wei Song
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Zeyun Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yong Wu
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Karunanidhi Murali
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Paramasivam Sivaguru
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| |
Collapse
|
4
|
Xiao J, Jiang D, Wu X, Li J, Liu K, Huang B, Wang W. Carbene-induced ring-opening reactions of five-/six-membered cyclic ethers: expanding the frontiers of functional group introduction and molecular architecture construction. Org Biomol Chem 2025; 23:2024-2040. [PMID: 39840541 DOI: 10.1039/d4ob01923g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The multi-component ring-opening reactions of cyclic ethers offer an efficient strategy for the rapid introduction of multiple functional groups and the construction of complex molecular architectures. Despite the minimal ring strain in five- and six-membered rings presenting a significant challenge for ring-opening, advancements have been made. Traditional acid-catalyzed pathways have been complemented by a novel approach involving carbene-induced oxonium intermediate formation, which has emerged in recent years and expanded the selectivity of ring-opening reactions. This review outlines the evolution of carbene-induced ring-opening reactions of cyclic ethers over the past two decades, focusing on the development of carbene precursors and the pathways of carbene formation. The insights provided are anticipated to inform and inspire the creation of new carbene sources and the advancement of oxonium intermediates, thereby contributing to the field's progress.
Collapse
Affiliation(s)
- Jun Xiao
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Dandan Jiang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Xiujuan Wu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Juanhua Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Wei Wang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| |
Collapse
|
5
|
McFee EC, Rykaczewski KA, Schindler CS. Photoredox-Catalyzed Decarboxylation of Oxetane-2-Carboxylic Acids and Unique Mechanistic Insights. Angew Chem Int Ed Engl 2025; 64:e202405125. [PMID: 39668746 DOI: 10.1002/anie.202405125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Oxetanes are valuable motifs in medicinal chemistry applications, with demonstrated potential to serve as bioisosteres for an array of functional groups. Through the visible-light-mediated photoredox hydrodecarboxylation of 2-aryl oxetane 2-carboxylic acids this work enables access to the products of a [2+2]-photocycloaddition between alkenes and aryl aldehydes without the challenges associated with a traditional UV-light-mediated Paternò-Büchi reaction. Investigation into the hydrodecarboxylation mechanism reveals substrate-dependent modes of initiation under the conditions reported herein. Divergence in diastereomeric outcome is observed, with mechanistic probes elucidating key hydrogen-bonding and steric interactions.
Collapse
Affiliation(s)
- Elvis C McFee
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, United States
| | - Katie A Rykaczewski
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, United States
| | - Corinna S Schindler
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
6
|
Zhang X, Sivaguru P, Pan Y, Wang N, Zhang W, Bi X. The Carbene Chemistry of N-Sulfonyl Hydrazones: The Past, Present, and Future. Chem Rev 2025; 125:1049-1190. [PMID: 39792453 DOI: 10.1021/acs.chemrev.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
N-Sulfonyl hydrazones have been extensively used as operationally safe carbene precursors in modern organic synthesis due to their ready availability, facile functionalization, and environmental benignity. Over the past two decades, there has been tremendous progress in the carbene chemistry of N-sulfonyl hydrazones in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Many carbene transfer reactions of N-sulfonyl hydrazones are unique and cannot be achieved by any alternative methods. The discovery of novel N-sulfonyl hydrazones and the development of highly enantioselective new reactions and skeletal editing reactions represent the notable recent achievements in the carbene chemistry of N-sulfonyl hydrazones. This review describes the overall progress made in the carbene chemistry of N-sulfonyl hydrazones, organized based on reaction types, spotlighting the current state-of-the-art and remaining challenges to be addressed in the future. Special emphasis is devoted to identifying, describing, and comparing the scope and limitations of current methodologies, key mechanistic scenarios, and potential applications in the synthesis of complex molecules.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Yongzhen Pan
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Nan Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wenjie Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
7
|
Ghosh A, Van Nguyen TH, Bellanger C, Chelli S, Ahmad M, Saffon-Merceron N, Taillier C, Dalla V, Mayer RJ, Dixon IM, Lakhdar S. Unraveling C-Selective Ring-Opening of Phosphiranes with Carboxylic Acids and Other Nucleophiles: A Mechanistically-Driven Approach. Angew Chem Int Ed Engl 2025; 64:e202414172. [PMID: 39140616 DOI: 10.1002/anie.202414172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Phosphiranes are weak Lewis bases reacting with only a limited number of electrophiles to produce the corresponding phosphiranium ions. These salts are recognized for their propensity to undergo reactions with oxygen pronucleophiles at the phosphorus site, leading to the formation of phosphine oxide adducts. Building on a thorough mechanistic understanding, we have developed an unprecedented approach that enables the selective reaction of carboxylic acids, and other nucleophiles, at the carbon site of phosphiranes. This method involves the photochemical generation of highly reactive carbenes, which react with 1-mesitylphosphirane to yield ylides. The latter undergoes a stepwise reaction with carboxylic acids, resulting in the production of the desired phosphines. In addition to DFT calculations, we have successfully isolated and fully characterized the key intermediates involved in the reaction.
Collapse
Affiliation(s)
- Avisek Ghosh
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Thi Hong Van Nguyen
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Corentin Bellanger
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Saloua Chelli
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Mohammad Ahmad
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Nathalie Saffon-Merceron
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT- UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 9, France
| | - Catherine Taillier
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Vincent Dalla
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Robert J Mayer
- School of Natural Sciences, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, F-31062, Toulouse, France
| | - Sami Lakhdar
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
8
|
Yi M, Wu X, Yang L, Yuan Y, Lu Y, Zhang Z. Visible Light Induced B-H Bond Insertion Reaction with Diazo Compounds. J Org Chem 2024; 89:12583-12590. [PMID: 39158102 DOI: 10.1021/acs.joc.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A protocol induced by visible light for the direct insertion of α-carbonyl carbenes into the B-H bond of amine-borane adducts has been developed under conditions that are free of metal and photocatalyst. This approach provides a straightforward route to various organoboron compounds from diazo compounds and amine-borane adducts with moderate to good yields. Mechanistic investigations reveal that this photoinduced reaction proceeds through concerted carbene insertion into the B-H bond, and the photoinduced generation of free carbene from α-diazo esters may be the rate-determining step.
Collapse
Affiliation(s)
- Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Faure C, Benmaouche S, Belmont P, Brachet E, Lamaa D. N-H Insertion of Anilines on N-Tosylhydrazones Induced by Visible Light Irradiation. J Org Chem 2024; 89:11620-11630. [PMID: 39056462 DOI: 10.1021/acs.joc.4c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diazo compounds and their precursors represent an interesting chemical category for organic synthesis. Particularly, N-tosylhydrazones have attracted attention for their easy accessibility and diverse reactivity, including carbene transfer reactions. We described a visible light-induced N-H insertion reaction of anilines on in situ-generated diazo compounds. Optimal conditions using DBU in toluene efficiently yielded the desired products. Mechanistic studies enabled us to trap a carbene intermediate that plays a key role in the transformation.
Collapse
Affiliation(s)
- Clara Faure
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Salim Benmaouche
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Philippe Belmont
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Etienne Brachet
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Diana Lamaa
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| |
Collapse
|
10
|
Han X, Zhang N, Li Q, Zhang Y, Das S. The efficient synthesis of three-membered rings via photo- and electrochemical strategies. Chem Sci 2024:d4sc02512a. [PMID: 39156935 PMCID: PMC11325197 DOI: 10.1039/d4sc02512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Three-membered rings, such as epoxides, aziridines, oxaziridines, cyclopropenes, vinyloxaziridines, and azirines, are recognized as crucial pharmacophores and building blocks in organic chemistry and drug discovery. Despite the significant advances in the synthesis of these rings through photo/electrochemical methods over the past decade, there has currently been no focused discussion and updated overviews on this topic. Therefore, we presented this review article on the efficient synthesis of three-membered rings using photo- and electrochemical strategies, covering the literature since 2015. In this study, a conceptual overview and detailed discussions were provided to illustrate the advancement of this field. Moreover, a brief discussion outlines the current challenges and opportunities in synthesizing the three-membered rings using these strategies.
Collapse
Affiliation(s)
- Xinyu Han
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Na Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Bayreuth 95447 Germany
| |
Collapse
|
11
|
Yamini P, Babbar A, Yadagiri D. Light-Driven Intramolecular Cyclopropanation of Alkene-Tethered N-Tosylhydrazones: Synthesis of Fused-Cyclopropane γ-Lactones. Org Lett 2024; 26:6035-6040. [PMID: 38985949 DOI: 10.1021/acs.orglett.4c02182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Fused-cyclopropane ring-containing γ-lactone compounds are versatile building blocks in many fields, including the synthesis of biologically active compounds. Here, we report the light-driven intramolecular cyclopropanation of alkene-tethered N-tosylhydrazones in the presence of Cs2CO3 and visible light. We have synthesized various electronically and sterically substituted and heterocyclic-containing fused-(spiro)cyclopropane γ-lactone compounds in good yields under transition metal-free conditions using a radical-free approach. In addition, the one-pot synthesis of fused-cyclopropane γ-lactones from α-ketoesters and their synthetic utility are also presented.
Collapse
Affiliation(s)
- Pokhriyal Yamini
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Akanksha Babbar
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dongari Yadagiri
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
12
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
13
|
Junaid M, Happy S, Yadagiri D. Light-induced arylation (alkylation) of N-sulfonylhydrazones with boronic acids. Chem Commun (Camb) 2024; 60:2796-2799. [PMID: 38362736 DOI: 10.1039/d4cc00161c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Di- and triarylmethanes are an important class of compounds in many fields. Here, we report an efficient light-induced arylation (alkylation) for the synthesis of diarylmethanes, bis(diarylmethyl)benzenes, arylalkylmethanes, and triarylmethanes from readily accessible N-sulfonylhydrazones and aryl/alkylboronic acids with the aid of Cs2CO3. In the presence of light, the synthesis of diarylmethanes was also achieved from aldehydes in a one-pot manner via a three-component approach in good yields. Furthermore, we have demonstrated the synthetic utility by synthesizing organoboron compounds and 2°-alcohol.
Collapse
Affiliation(s)
- Mohammad Junaid
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sharma Happy
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Dongari Yadagiri
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
14
|
Harada S, Hirose S, Takamura M, Furutani M, Hayashi Y, Nemoto T. Silver(I)/Dirhodium(II) Catalytic Platform for Asymmetric N-H Insertion Reaction of Heteroaromatics. J Am Chem Soc 2024; 146:733-741. [PMID: 38149316 DOI: 10.1021/jacs.3c10596] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Transition-metal-catalyzed enantioselective N-H insertion reactions of carbene species offer a powerful and straightforward strategy to produce chiral nitrogen-containing compounds. Developing highly selective insertion reactions using indole variants can meet synthetic demand. Herein we present an asymmetric insertion reaction into N-H bonds of the aromatic heterocycles using donor/acceptor-substituted diazo compounds based on a heteronuclear catalytic platform. Although a previously developed catalysis comprising chiral silver catalyst or dirhodium(II,II) paddlewheel complexes with and without chiral phosphoric acid showed modest performance, a unique combination of widely available Rh2(OAc)4 and silver(I) phosphate dimer [(S)-TRIP-Ag]2 enabled asymmetric carbene insertion reactions (up to 98% ee). Moreover, the Ag/Rh catalytic system facilitated regioselective and enantioselective C-H functionalization of protic indoles. Mechanistic investigation based on density functional theory indicated that an in situ-generated Ag-Rh trimetallic enolate is protonated in a chiral environment.
Collapse
Affiliation(s)
- Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shumpei Hirose
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mizuki Takamura
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Maika Furutani
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuna Hayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
15
|
Valdés-Maqueda Á, López L, Plaza M, Valdés C. Synthesis of substituted benzylboronates by light promoted homologation of boronic acids with N-sulfonylhydrazones. Chem Sci 2023; 14:13765-13775. [PMID: 38075646 PMCID: PMC10699570 DOI: 10.1039/d3sc05678c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 07/30/2024] Open
Abstract
The synthesis of benzylboronates by photochemical homologation of boronic acids with N-tosylhydrazones under basic conditions is described. The reaction involves the photolysis of the N-tosylhydrazone salt to give a diazoalkane followed by the geminal carboborylation of the diazoalkane. Under the mild reaction conditions, the protodeboronation of the unstable benzylboronic acid is circumvented and the pinacolboronates can be isolated after reaction of the benzylboronic acid with pinacol. The metholodogy has been applied to the reactions of alkylboronic acids with N-tosylhydrazones of aromatic aldehydes and ketones, and to the reactions of arylboronic acids with N-tosylhydrazones of aliphatic ketones. Moreover, the employment of the DBU/DIPEA bases combination allows for homogeneous reactions which have been adapted to photochemical continuous flow conditions. Additionally, the synthetic versatility of boronates enables their further transformation via Csp3-C or Csp3-X bond forming reactions converting this methodology into a novel method for the geminal difunctionalization of carbonyls via N-tosylhydrazones.
Collapse
Affiliation(s)
- Álvaro Valdés-Maqueda
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Lucía López
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
16
|
He F, Sun Z, Li C, Jiang Z, Miao H, Li Q, Wu C. Regioselective [2 + 1] photocycloaddition of 2-pyridones with diazo compounds. Org Biomol Chem 2023; 21:8273-8278. [PMID: 37812037 DOI: 10.1039/d3ob01354e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Herein, we report a novel regioselective [2 + 1] cyclization reaction of 2-pyridones with carbenes generated in situ via visible light irradiation, without the requirement for catalysts or additives. The diverse functional groups of 2-pyridones and diazo compounds exhibit good tolerance, enabling the rapid synthesis of highly valuable cyclopropanated dihydro-2-pyridone scaffolds with exceptional regio- and stereoselectivity. Furthermore, DFT calculations provide a comprehensive explanation for the regio- and stereoselectivity observed in the reaction.
Collapse
Affiliation(s)
- Fengya He
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China.
| | - Ziyi Sun
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China.
| | - Chenyue Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China.
| | - Zibin Jiang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China.
| | - Hui Miao
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China.
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China.
| | - Chenggui Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China.
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China.
| |
Collapse
|
17
|
Hussain Y, Empel C, Koenigs RM, Chauhan P. Carbene Formation or Reduction of the Diazo Functional Group? An Unexpected Solvent-Dependent Reactivity of Cyclic Diazo Imides. Angew Chem Int Ed Engl 2023; 62:e202309184. [PMID: 37506274 DOI: 10.1002/anie.202309184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The control of the reactivity of diazo compounds is commonly achieved by the choice of a suitable catalyst, e.g. via stabilization of singlet carbenes or radical intermediates. Herein, we report on the light-promoted reactivity of cyclic diazo imides with thiols, where the choice of solvent results in two fundamentally different reaction pathways. In dichloromethane (DCM), a carbene is formed initially and engages in a cascade C-H functionalization/thiolation reaction to deliver indane-fused pyrrolidines in good to excellent yields. When switching to acetonitrile solvent, the carbene pathway is shut down and an unusual reduction of the diazo compound occurs under otherwise identical reaction conditions, where the aryl thiol acts as reductant. A combined set of experimental and computational studies was carried out to obtain mechanistic understanding and to support that indane formation proceeds via the insertion of a triplet carbene, while the reduction of diazo imides proceeds via an electron transfer process.
Collapse
Affiliation(s)
- Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074, Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074, Aachen, Germany
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| |
Collapse
|
18
|
Joynson BW, Cumming GR, Ball LT. Photochemically Mediated Ring Expansion of Indoles and Pyrroles with Chlorodiazirines: Synthetic Methodology and Thermal Hazard Assessment. Angew Chem Int Ed Engl 2023; 62:e202305081. [PMID: 37294032 PMCID: PMC11497286 DOI: 10.1002/anie.202305081] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
We demonstrate that arylchlorodiazirines serve as photo-activated halocarbene precursors for the selective one-carbon ring expansion of N-substituted pyrroles and indoles to the corresponding pyridinium and quinolinium salts. Preliminary investigations indicate that the same strategy also enables the conversion of N-substituted pyrazoles to pyrimidinium salts. The N-substituent of the substrate plays an essential role in: (1) increasing substrate scope by preventing product degradation, (2) enhancing yields by suppressing co-product inhibition, and (3) activating the azinium products towards subsequent synthetic manipulations. This latter point is illustrated by subjecting the quinolinium salts to four complementary partial reductions, which provide concise access to ring-expanded products with different degrees of increased C(sp3 ) character. Thermal analysis of the diazirines by differential scanning calorimetry (DSC) provides detailed insight into their energetic properties, and highlights the safety benefits of photolyzing-rather than thermolyzing-these reagents.
Collapse
Affiliation(s)
- Ben W. Joynson
- School of ChemistryUniversity of NottinghamNottinghamNG7 2RDUK
| | - Graham R. Cumming
- Centro de Investigación Lilly S. A.Avda. de la Industria 30, AlcobendasMadrid28108Spain
| | - Liam T. Ball
- School of ChemistryUniversity of NottinghamNottinghamNG7 2RDUK
| |
Collapse
|
19
|
Bai J, Li S, Qi D, Song Z, Li B, Guo L, Song L, Xia W. Visible-Light-Induced Trifluoromethylsulfonylation Reaction of Diazo Compounds Enabled by Manganese Catalysis. Org Lett 2023; 25:2410-2414. [PMID: 36996439 DOI: 10.1021/acs.orglett.3c00490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
A visible-light-induced trifluoromethylsulfonylation reaction of diazo compounds is herein reported. This developed synthetic method captures the relatively rare trifluoromethyl sulfone radicals via coordination to the Mn(acac)3 catalyst, delivering the corresponding α-trifluoromethyl sulfone esters in good to moderate yields (up to 82%). This protocol exhibits broad substrate scope and is easily carried out under mild reaction conditions. Furthermore, a plausible mechanism of the reaction was investigated through DFT calculations.
Collapse
Affiliation(s)
- Jinrui Bai
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Dan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhuoheng Song
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bin Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lijuan Song
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
20
|
Pan JB, Zhang XG, Shi YF, Han AC, Chen YJ, Ouyang J, Li ML, Zhou QL. A Spiro Phosphamide Catalyzed Enantioselective Proton Transfer of Ylides in a Free Carbene Insertion into N-H Bonds. Angew Chem Int Ed Engl 2023; 62:e202300691. [PMID: 36786065 DOI: 10.1002/anie.202300691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Free carbene readily causes multiple side reactions due to its high energy, thus its asymmetric transformation is very difficult. We present here our findings of high-pKa Brønsted acid catalysts that enable free carbene insertion into N-H bonds of amines to prepare chiral α-amino acid derivatives with high enantioselectivity. Under irradiation with visible light, diazo compounds produce high-energy free carbenes that are captured by amines to form free ylide intermediates, and then the newly designed high-pKa Brønsted acids, chiral spiro phosphamides, promote the proton transfer of ylides to afford the products. Computational and kinetic studies uncover the principle for the rational design of proton-transfer catalysts and explain how the catalysts accelerate this transformation and provide stereocontrol.
Collapse
Affiliation(s)
- Jia-Bin Pan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuan-Ge Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Fan Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ai-Cui Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Jia Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jing Ouyang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mao-Lin Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Guo W, Zhou Y, Xie H, Yue X, Jiang F, Huang H, Han Z, Sun J. Visible-light-induced organocatalytic enantioselective N-H insertion of α-diazoesters enabled by indirect free carbene capture. Chem Sci 2023; 14:843-848. [PMID: 36755716 PMCID: PMC9890670 DOI: 10.1039/d2sc05149d] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
While asymmetric insertion of metal carbenes into H-X (X = C, N, O, etc.) bonds has been well-established, asymmetric control over free carbenes is challenging due to the presence of strong background reactions and lack of any anchor for a catalyst interaction. Here we have achieved the first photo-induced metal-free asymmetric H-X bond insertion of this type. With visible light used as a promoter and a chiral phosphoric acid used as a catalyst, α-diazoesters and aryl amines underwent smooth N-H bond insertion to form enantioenriched α-aminoesters with high efficiency and good enantioselectivity under mild conditions. Key to the success was the use of DMSO as an additive, which served to rapidly capture the highly reactive free carbene intermediate to form a domesticated sulfoxonium ylide.
Collapse
Affiliation(s)
- Wengang Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Ying Zhou
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Hongling Xie
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Xin Yue
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Feng Jiang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Hai Huang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Zhengyu Han
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China .,Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong SAR China.,Shenzhen Research Institute, HKUST No. 9 Yuexing 1st Rd Shenzhen 518057 China
| |
Collapse
|
22
|
Wang H, Wang S, George V, Llorente G, König B. Photo‐Induced Homologation of Carbonyl Compounds for Iterative Syntheses. Angew Chem Int Ed Engl 2022; 61:e202211578. [PMID: 36226924 PMCID: PMC10099875 DOI: 10.1002/anie.202211578] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Indexed: 11/12/2022]
Abstract
We describe a photo-induced reaction for the in situ generation of highly reactive alkyl diazo species from carbonyl precursors via photo-excitation of N-tosylhydrazone anions. The diazo intermediates undergo efficient C-H insertion of aldehydes, leading to the productive synthesis of aldehydes and ketones. The method is applicable to the iterative synthesis of densely functionalized carbonyl compounds through sequential trapping of the diazo species with various aldehydes. The reaction proceeds without the need of any catalyst by light irradiation and features high functional group tolerance. More than 70 examples, some performed on a gram-scale, demonstrate the broad applicability of this reaction sequence in synthesis.
Collapse
Affiliation(s)
- Hua Wang
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
- Department of Chemistry, School of Pharmacy The Fourth Military Medical University Xi'an 710032 P. R. China
| | - Shun Wang
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Vincent George
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Galder Llorente
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| |
Collapse
|
23
|
Wang Y, Jia P, Hao Y, Li J, Lai R, Guo L, Wu Y. Blue light induced [2,3]-sigmatropic rearrangement reactions of tosylhydrazones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
DFT rationalization of metal-catalyst-controlled coupling of carbazole with diazo-naphthalen-2(1H)-one. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Zhang H, Wang Z, Wang Z, Chu Y, Wang S, Hui XP. Visible-Light-Mediated Formal Carbene Insertion Reaction: Enantioselective Synthesis of 1,4-Dicarbonyl Compounds Containing All-Carbon Quaternary Stereocenter. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zheyuan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zirui Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yunpeng Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shuncheng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
26
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
27
|
Empel C, Jana S, Langletz T, Koenigs RM. Rhodium-Catalyzed C-H Methylation and Alkylation Reactions by Carbene-Transfer Reactions. Chemistry 2022; 28:e202104321. [PMID: 35015327 PMCID: PMC9302633 DOI: 10.1002/chem.202104321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/18/2022]
Abstract
In this combined computational and experimental study, the C-H functionalization of 2-phenyl pyridine with diazoalkanes was investigated. Initial evaluation by computational methods allowed the evaluation of different metal catalysts and diazoalkanes and their compatibility in this C-H functionalization reaction. With these findings, suitable reaction conditions for the C-H methylation reactions were quickly identified by using highly reactive TMS diazomethane and C-H alkylation reactions with donor/acceptor diazoalkanes, which is applied to a broad scope on alkylation reactions of 2-aryl pyridines with TMS diazomethane and donor/acceptor diazoalkane (51 examples, up to 98 % yield).
Collapse
Affiliation(s)
- Claire Empel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| | - Sripati Jana
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| | - Tim Langletz
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| |
Collapse
|
28
|
Su J, Li Q, Shao Y, Sun J. Catalytic Transformations of 2-Pyridones by Rhodium-Mediated Carbene Transfer. Org Lett 2022; 24:1637-1641. [PMID: 35191701 DOI: 10.1021/acs.orglett.2c00151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An enantioselective cyclopropanation reaction of N-substituted 2-pyridones with diazo compounds has been realized by using a chiral rhodium complex as the catalyst, and the corresponding chiral cyclopropanes could be formed in good yields with high enantioselectivities. Moreover, using acceptor-acceptor dimethyl 2-diazomalonate as the carbene precursor, a novel 1,4-rearrangement of a Boc group from N to C has also been discovered under rhodium catalysis.
Collapse
Affiliation(s)
- Jiahui Su
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qiongya Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
29
|
Empel C, Pei C, Koenigs RM. Unlocking novel reaction pathways of diazoalkanes with visible light. Chem Commun (Camb) 2022; 58:2788-2798. [DOI: 10.1039/d1cc06521a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemistry has recently attracted the interest of synthetic chemists to conduct photolysis reactions of diazoalkanes. In this feature article, we provide a concise overview on this field, starting with discoveries...
Collapse
|
30
|
Bunyamin A, Hua C, Polyzos A, Priebbenow DL. Intramolecular Photochemical [2+1]-Cycloadditions of Nucleophilic Siloxy Carbenes. Chem Sci 2022; 13:3273-3280. [PMID: 35414869 PMCID: PMC8926286 DOI: 10.1039/d2sc00203e] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Visible light induced singlet nucleophilic carbenes undergo rapid [2 + 1]-cycloaddition with tethered olefins to afford unique bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane scaffolds. This cyclopropanation process requires only visible light irradiation to proceed, circumventing the use of exogenous (photo)catalysts, sensitisers or additives and showcases a vastly underexplored mode of reactivity for nucleophilic carbenes in chemical synthesis. The discovery of additional transformations including a cyclopropanation/retro-Michael/Michael cascade process to afford chromanones and a photochemical C–H insertion reaction are also described. Visible light induced singlet nucleophilic carbenes undergo rapid [2 + 1]-cycloaddition with tethered olefins to afford unique bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane scaffolds.![]()
Collapse
Affiliation(s)
- Amanda Bunyamin
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
| | - Carol Hua
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
- School of Life and Environmental Sciences, Deakin University Waurn Ponds Victoria 3216 Australia
| | - Anastasios Polyzos
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| | - Daniel L Priebbenow
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Science, Monash University Parkville Victoria 3052 Australia
| |
Collapse
|
31
|
Leveille AN, Echemendía R, Mattson AE, Burtoloso ACB. Enantioselective Indole Insertion Reactions of α-Carbonyl Sulfoxonium Ylides. Org Lett 2021; 23:9446-9450. [PMID: 34854689 DOI: 10.1021/acs.orglett.1c03627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first example of organocatalytic enantioselective C-H insertion reactions of indoles and sulfoxonium ylides is reported. Under the influence of phosphoric acid catalysis, levels of enantiocontrol in the range of 20-93% ee and moderate yields (up to 50%) were achieved for 29 examples in formal C-H insertion reactions of free indoles and α-carbonyl sulfoxonium ylides. No nitrogen protection on the indole is necessary.
Collapse
Affiliation(s)
- Alexandria N Leveille
- Department Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Radell Echemendía
- Institute of Chemistry of São Carlos, University of São Paulo, CEP 13560-970 São Carlos, São Paulo, Brazil
| | - Anita E Mattson
- Department Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Antonio C B Burtoloso
- Institute of Chemistry of São Carlos, University of São Paulo, CEP 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
32
|
He F, Empel C, Koenigs RM. Silver-Catalyzed N-H Functionalization of Aryl/Aryl Diazoalkanes with Anilines. Org Lett 2021; 23:6719-6723. [PMID: 34427449 DOI: 10.1021/acs.orglett.1c02289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report on the N-H functionalization reaction of primary and secondary anilines with diaryldiazoalkanes using simple AgPF6 as catalyst. We demonstrated broad applicability in the reaction of diaryldiazoalkanes with different anilines (31 examples, up to 97% yield). Furthermore, we propose a possible reaction mechanism for the N-H functionalization.
Collapse
Affiliation(s)
- Feifei He
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
33
|
Abstract
Herein, we report on the tris(pentafluorophenyl)borane-catalyzed reaction of carbazole heterocycles with aryldiazoacetates. We could demonstrate that selective N-H functionalization occurs in the case of an unprotected carbazole, other N-heterocycles, and secondary amines in good yields. In contract, the protected carbazole undergoes C-H functionalization at the C-3 position in a good yield. The application of both approaches was studied in 41 examples with up to a 97% yield.
Collapse
Affiliation(s)
- Feifei He
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
34
|
|
35
|
Zhao H, Shen P, Sun D, Zhai H, Zhao Y. The Regioselective Functionalization Reaction of Unprotected Carbazoles with Donor-Acceptor Cyclopropanes. J Org Chem 2021; 86:9189-9199. [PMID: 34111921 DOI: 10.1021/acs.joc.1c00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regioselective functionalization reaction of unprotected carbazoles with donor-acceptor (D-A) cyclopropanes has been demonstrated for the first time. With Sc(OTf)3 as Lewis acid catalyst, the N-H functionalization of carbazoles takes place through a highly selective nitrogen-initiated nucleophilic ring opening reaction. Significantly, by engaging TfOH as Brønsted acid catalyst, a straightforward C-H functionalization at the 3-position of the unprotected carbazole proceeds via Friedel-Crafts-type addition. This strategy facilitates the diversity-oriented synthesis of carbazole-containing heterocycles and expands the novel application of D-A cyclopropanes.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Shen
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
36
|
Sar S, Das R, Sen S. Blue LED Induced Manganese (I) Catalysed Direct C2−H Activation of Pyrroles with Aryl Diazoesters. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Saibal Sar
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| | - Ranajit Das
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| |
Collapse
|
37
|
Chowdhury R, Mendoza A. N-Hydroxyphthalimidyl diazoacetate (NHPI-DA): a modular methylene linchpin for the C-H alkylation of indoles. Chem Commun (Camb) 2021; 57:4532-4535. [PMID: 33956022 PMCID: PMC8101283 DOI: 10.1039/d1cc01026c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Despite the extensive studies on the reactions between conventional diazocompounds and indoles, these are still limited by the independent synthesis of the carbene precursors, the specific catalysts, and the required multi-step manipulation of the products. In this work, we explore redox-active carbenes in the expedited and divergent synthesis of functionalized indoles. NHPI-DA displays unusual efficiency and selectivity to yield insertion products that can be swiftly elaborated into boron and carbon substituents that are particularly problematic in carbene-mediated reactions.
Collapse
Affiliation(s)
- Rajdip Chowdhury
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| | - Abraham Mendoza
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
38
|
Guha S, Gadde S, Kumar N, Black DS, Sen S. Orthogonal Syntheses of γ-Carbolinone and Spiro[pyrrolidinone-3,3']indole Derivatives in One Pot through Reaction Telescoping. J Org Chem 2021; 86:5234-5244. [PMID: 33720725 DOI: 10.1021/acs.joc.1c00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein we report a series of telescoping methodologies for one pot synthesis of biologically relevant γ-carboline derivatives 6 and spiro[pyrrolidinone-3,3']indole 7. Initially the three consecutive steps of cyclopropanation, phthalimide deprotection, and Boc-deprotection have been congregated in a single reaction vessel to afford a ∼1:1 mixture of 6 and 7. Next, careful optimization of the reaction sequence and the conditions generated an orthogonal approach to access compounds 6 and 7 exclusively. Air oxidation of the γ-carbolinones 6 afforded aromatic γ-carbolines 8.
Collapse
Affiliation(s)
- Souvik Guha
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Gautambudh Nagar, UP 201314, India
| | | | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Gautambudh Nagar, UP 201314, India
| |
Collapse
|
39
|
Bahukhandi SB, Jana S, Koenigs RM. Brønsted acid‐catalyzed Reactions of Unprotected
N
‐heterocycles with Aryl/Aryl Diazoalkanes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Sripati Jana
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Rene M. Koenigs
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| |
Collapse
|
40
|
Maiti D, Das R, Sen S. Blue LED-Mediated N-H Insertion of Indoles into Aryldiazoesters at Room Temperature in Batch and Flow: Reaction Kinetics, Density Functional Theory, and Mechanistic Study. J Org Chem 2021; 86:2522-2533. [PMID: 33417455 DOI: 10.1021/acs.joc.0c02649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mild blue light-mediated N-H insertion of indole and its derivatives into aryldiazoesters has been reported in a batch and flow strategy to afford the corresponding N-alkylated product in moderate-to-excellent yield. Detailed high-performance liquid chromatography-based reaction kinetics measurements, control experiments, and kinetic isotope effect reveal that 3-substituted indoles with electron-withdrawing groups such as -CN and -CHO facilitated the product formation, whereas the electron-donating group retarded the process. The neutral indole performed in between them. Furthermore, Hammett plot and density functional theory-based transition-state optimization studies showed substantial correlation of the electronic nature of the substituents at the C3 position of indoles with the rate of the N-H insertion reaction. The strategy was utilized to synthesize a key intermediate for the natural product (-)-psychotrimine.
Collapse
Affiliation(s)
- Debajit Maiti
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Ranajit Das
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
41
|
Zhao B, Yang L, Cheng K, Zhou L, Wan JP. Visible Light Induced Oxidation of α-Diazo Esters for the Transition Metal-Free Synthesis of α-Keto Esters. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202111020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Mei H, Liu J, Pajkert R, Wang L, Röschenthaler GV, Han J. Design of (β-diazo-α,α-difluoroethyl)phosphonates and their application as masked carbenes in visible light-promoted coupling reactions with sulfonic acids. Org Chem Front 2021. [DOI: 10.1039/d0qo01394c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new kind of (β-diazo-α,α-difluoroethyl)phosphonate was designed and used as masked carbenes in visible-light-promoted reactions with sulfonic acids.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry
- Jacobs University Bremen gGmbH
- 28759 Bremen
- Germany
| | - Li Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | | | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
43
|
Liu J, Xu J, Pajkert R, Mei H, Röschenthaler GV, Han J. Esterification of Carboxylic Acids with (β-Diazo-α,α-difluoroethyl)phosphonates under Photochemical Conditions. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Bera SS, Bahukhandi SB, Empel C, Koenigs RM. Catalyst-controlled site-selective N-H and C3-arylation of carbazole via carbene transfer reactions. Chem Commun (Camb) 2021; 57:6193-6196. [PMID: 34048520 DOI: 10.1039/d1cc01863a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A site-selective direct arylation reaction of carbazole and other N-heterocycles with diazo-naphthalen-2(1H)-ones has been developed. While Au(i)-NHC catalysts lead to selective C3-arylation, palladium acetate allows for selective N-H arylation, displaying complete site-selectivity each. To show the applicability of these arylation reactions, one-pot, two-fold diarylation reactions of carbazole were demonstrated.
Collapse
Affiliation(s)
- Sourav Sekhar Bera
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, Aachen D-52074, Germany.
| | | | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, Aachen D-52074, Germany.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, Aachen D-52074, Germany.
| |
Collapse
|
45
|
Liu J, Xu G, Tang S, Chen Q, Sun J. Site-Selective Functionalization of 7-Azaindoles via Carbene Transfer and Isolation of N-Aromatic Zwitterions. Org Lett 2020; 22:9376-9380. [DOI: 10.1021/acs.orglett.0c03653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Junheng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
46
|
Jana S, Empel C, Pei C, Vinh Nguyen T, Koenigs RM. Gold‐catalyzed C−H Functionalization of Phenothiazines with Aryldiazoacetates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sripati Jana
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Claire Empel
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
- University of New South Wales School of Chemistry Sydney Australia
| | - Chao Pei
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | | | - Rene M. Koenigs
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
- University of New South Wales School of Chemistry Sydney Australia
| |
Collapse
|
47
|
Chen J, Liu S, Lv X, Hong K, Lei J, Xu X, Hu W. Blue Light-Promoted Formal [4+1]-Annulation of Diazoacetates with o-Aminoacetophenones: Synthesis of Polysubstituted Indolines and Computational Study. J Org Chem 2020; 85:13920-13928. [PMID: 33034191 DOI: 10.1021/acs.joc.0c01974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A blue light-promoted formal [4+1]-annulation of diazoacetates with o-aminoacetophenones has been reported, which provides an environmentally friendly method for the synthesis of polysubstituted indoline derivatives in moderate to good yields with excellent diastereoselectivities. Detailed mechanistic studies through density functional theory calculations reveal that the (E)-enol species is the key intermediate in this transformation, and the excellent diastereoselectivity is enabled via H-bonding in the intramolecular Aldol-type addition.
Collapse
Affiliation(s)
- Jinzhou Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuhao Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinxin Lv
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kemiao Hong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jinping Lei
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
48
|
Li X, Mai S, Li X, Xu J, Xu H, Song Q. Cu-Catalyzed o-Amino Benzofuranthioether Formation from N-Tosylhydrazone-Bearing Thiocarbamates and Arylative Electrophiles. Org Lett 2020; 22:7874-7878. [PMID: 32990445 DOI: 10.1021/acs.orglett.0c02778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An important framework of o-amino benzofuranthioethers was constructed by Cu-catalyzed arylative cyclization of N-tosylhydrazone-bearing thiocarbamates with silylaryl triflates or ArI. This transformation provides a novel strategy for the synthesis of valuable arylative o-amino benzofuranthioethers in moderate yields which could not be obtained from known methods. The reaction features smart design, efficient construction, and mild reaction conditions.
Collapse
Affiliation(s)
- Xue Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Shaoyu Mai
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Hetao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
49
|
Affiliation(s)
- Mukund Ghavre
- IntelliSyn Pharma 7171 Rue Frederick Banting Montréal, Saint-Laurent QC H4S 1Z9 Canada
| |
Collapse
|
50
|
Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Visible light-promoted reactions with diazo compounds: a mild and practical strategy towards free carbene intermediates. Chem Soc Rev 2020; 49:6833-6847. [PMID: 32856627 DOI: 10.1039/d0cs00224k] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carbenes are important intermediates in organic chemistry and have been widely applied in various types of organic reactions, ranging from cycloaddition reactions and sigmatropic rearrangements to C-H functionalizations, thus allowing the rapid construction of densely functionalized molecules. Over the past decades, remarkable progress has been achieved in metal-catalyzed carbene transfer reactions. Nevertheless, realizing these transformations under milder and/or greener conditions is still highly desirable. Only recently, visible light-promoted carbene transfer reactions of diazo compounds via free carbene intermediates have emerged as a practical, mild and powerful tool. In this tutorial review, we summarize the latest advances in the area, aiming at providing a clear overview on reaction design, mechanistic scenarios and potential future developments.
Collapse
Affiliation(s)
- Zhen Yang
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| | - Mateus L Stivanin
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil.
| | - Igor D Jurberg
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| |
Collapse
|