1
|
Li F, Wu H, Wen H, Wang C, Shen C, Su L, Liu S, Chen Y, Wang L. Constructing a Stable Integrated Silicon Electrode with Efficient Lithium Storage Performance through Multidimensional Structural Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8802-8812. [PMID: 38319879 DOI: 10.1021/acsami.3c17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Silicon (Si) stands out as a highly promising anode material for next-generation lithium-ion batteries. However, its low intrinsic conductivity and the severe volume changes during the lithiation/delithiation process adversely affect cycling stability and hinder commercial viability. Rational design of electrode architecture to enhance charge transfer and optimize stress distribution of Si is a transformative way to enhance cycling stability, which still remains a great challenge. In this work, we fabricated a stable integrated Si electrode by combining two-dimensional graphene sheets (G), one-dimensional Si nanowires (SiNW), and carbon nanotubes (CNT) through the cyclization process of polyacrylonitrile (PAN). The integrated electrode features a G/SiNW framework enveloped by a conformal coating consisting of cyclized PAN (cPAN) and CNT. This configuration establishes interconnected electron and lithium-ion transport channels, coupled with a rigid-flexible encapsulated coating, ensuring both high conductivity and resistance against the substantial volume changes in the electrode. The unique multidimensional structural design enhances the rate performance, cyclability, and structural stability of the integrated electrode, yielding a gravimetric capacity (based on the total mass of the electrode) of 650 mAh g-1 after 1000 cycles at 3.0 A g-1. When paired with a commercial LiNi0.5Co0.2Mn0.3O2 cathode, the resulting full cell retains 84.8% of its capacity after 160 cycles at 2.0 C and achieves an impressive energy density of 435 Wh kg-1 at 0.5 C, indicating significant potential for practical applications. This study offers valuable insights into comprehensive electrode structure design at the electrode level for Si-based materials.
Collapse
Affiliation(s)
- Fenghui Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- School of Materials Science and Engineering, Henan Institute of Technology, Xinxiang 453003, China
| | - Hao Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chen Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chaoqi Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liwei Su
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sheng Liu
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300071, China
| | - Yifan Chen
- Hangzhou Vocational & Technical College, Hangzhou 310018, China
| | - Lianbang Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Xu Y, Zhang Y, Hu Q, Li H, Jiao F, Wang W, Zhang S, Du H. In Situ Copper Coating on Silicon Particles Enables Long Durable Anodes in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5058-5066. [PMID: 38231084 DOI: 10.1021/acsami.3c13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Addressing the significant obstacles of volume expansion and inadequate electronic conductivity in silicon-based anode materials during lithiation is crucial for achieving a long durable life in lithium-ion batteries. Herein, a high-strength copper-based metal shell is coated in situ onto silicon materials through a chemical combination of copper citrate and Si-H bonds and subsequent heat treatment. The formed Cu and Cu3Si shell effectively mitigates the mechanical stress induced by volume expansion during lithiation, strengthens the connection with the copper substrate, and facilitates electron transfer and Li+ diffusion kinetics. Consequently, the composite exhibits a reversible specific capacity of 1359 mA h g-1 at 0.5 A g-1 and maintains a specific capacity of 837 mA h g-1 and an 83.5% capacity retention after 400 cycles at 1 A g-1, surpassing similar reports on electrochemical stability. This facile copper plating technique on silicon surfaces may be used to prepare high-performance silicon-based anodes or functional composites in other fields.
Collapse
Affiliation(s)
- Yanan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Jiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenkai Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shiyue Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongbin Du
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Sun J, Li A, Zheng P, Zheng Y. Improved cycling performance of silicon-based nanocomposites with pyrolytic polyacrylonitrile for lithium-ion batteries. NANOTECHNOLOGY 2023; 34:485401. [PMID: 37619551 DOI: 10.1088/1361-6528/acf380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
The Si/FeSi2@C composite material offers several advantages due to its unique design. It effectively combines the high capacity and safety features of the Si negative electrode with FeSi2's stabilizing properties. By incorporating a homogeneous carbon layer, the composite material enhances electrical conductivity and provides structural support, thereby mitigating the detrimental effects of significant volume expansion resulting from repeated insertion and extraction of lithium ions. Furthermore, the composite material contributes to stabilizing the solid-electrolyte interphase (SEI) film, which is a critical factor in battery performance. The improved SEI film stability, combined with the overall enhancement in electronic conductivity, significantly enhances the performance of the negative electrode. Test results demonstrate that the composite, consisting of pyrolyzed polyacrylonitrile and Si/FeSi2nanoparticles, exhibits excellent electrochemical properties. During the first charging cycle, the composite material achieves a specific capacity of 1280 mAh g-1. Impressively, after 200 cycles, the specific capacity of the composite doubles compared to that of the raw material, indicating a remarkable improvement in cycling stability. These findings highlight the positive impact of rational material design on the performance of the Si/FeSi2@C composites.
Collapse
Affiliation(s)
- Jichang Sun
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, People's Republic of China
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, People's Republic of China
| | - Aohan Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, People's Republic of China
| | - Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, People's Republic of China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan 618307, People's Republic of China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, People's Republic of China
| |
Collapse
|
4
|
Wang Z, Hao H, Luo X, Jing N, Wang M, Yang L, Chen J, Wang G, Wang G. Decreasing Deformation and Heat as Well as Intensifying Ionic Transport of Si Using a Negative Thermal Expansion Ceramic with High Ionic Conductivity. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqiang Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huming Hao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuejia Luo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Nana Jing
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mengyao Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Liangxuan Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianyue Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guixin Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Sun L, Liu Y, Wu J, Shao R, Jiang R, Tie Z, Jin Z. A Review on Recent Advances for Boosting Initial Coulombic Efficiency of Silicon Anodic Lithium Ion batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102894. [PMID: 34611990 DOI: 10.1002/smll.202102894] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Rechargeable silicon anode lithium ion batteries (SLIBs) have attracted tremendous attention because of their merits, including a high theoretical capacity, low working potential, and abundant natural sources. The past decade has witnessed significant developments in terms of extending the lifespan and maintaining high capacities of SLIBs. However, the detrimental issue of low initial Coulombic efficiency (ICE) toward SLIBs is causing more and more attention in recent years because ICE value is a core index in full battery design that profoundly determines the utilization of active materials and the weight of an assembled battery. Herein, a comprehensive review is presented of recent advances in solutions for improving ICE of SLIBs. From design perspectives, the strategies for boosting ICE of silicon anodes are systematically categorized into several aspects covering structure regulation, prelithiation, interfacial design, binder design, and electrolyte additives. The merits and challenges of various approaches are highlighted and discussed in detail, which provides valuable insights into the rational design and development of state-of-the-art techniques to deal with the deteriorative issue of low ICE of SLIBs. Furthermore, conclusions and future promising research prospects for lifting ICE of SLIBs are proposed at the end of the review.
Collapse
Affiliation(s)
- Lin Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanxiu Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jun Wu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Rong Shao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Ruiyu Jiang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zuoxiu Tie
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| |
Collapse
|
6
|
Su K, Luo J, Ji Y, Jiang X, Li J, Zhang J, Zhong Z, Su F. Use of the active-phase Cu3Si alloy as superior catalyst to direct synthesis of trichlorosilane via silicon hydrochlorination. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Light-assisted synthesis of copper/cuprous oxide reinforced nanoporous silicon microspheres with boosted anode performance for lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Lu T, Gong J, Xu Z, Yin J, Shao H, Wang J. Scalable Synthesis of Porous SiFe@C Composite with Excellent Lithium Storage. Chemistry 2021; 27:6963-6972. [PMID: 33561298 DOI: 10.1002/chem.202100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 11/09/2022]
Abstract
Utilizing cost-effective raw materials to prepare high-performance silicon-based anode materials for lithium-ion batteries (LIBs) is both challenging and attractive. Herein, a porous SiFe@C (pSiFe@C) composite derived from low-cost ferrosilicon is prepared via a scalable three-step procedure, including ball milling, partial etching, and carbon layer coating. The pSiFe@C material integrates the advantages of the mesoporous structure, the partially retained FeSi2 conductive phase, and a uniform carbon layer (12-16 nm), which can substantially alleviate the huge volume expansion effect in the repeated lithium-ion insertion/extraction processes, effectively stabilizing the solid-electrolyte interphase (SEI) film and markedly enhancing the overall electronic conductivity of the material. Benefiting from the rational structure, the obtained pSiFe@C hybrid material delivers a reversible capacity of 1162.1 mAh g-1 after 200 cycles at 500 mA g-1 , with a higher initial coulombic efficiency of 82.30 %. In addition, it shows large discharge capacities of 803.1 and 600.0 mAh g-1 after 500 cycles at 2 and 4 A g-1 , respectively, manifesting an excellent electrochemical lithium storage. This work provides a good prospect for the commercial production of silicon-based anode materials for LIBs with a high lithium-storage capacity.
Collapse
Affiliation(s)
- Tongzhou Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Junjie Gong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zeyu Xu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiaqian Yin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haibo Shao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jianming Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
9
|
Gong Q, Wang H, Song W, Sun B, Cao P, Gu S, Sun X, Zhou G. Tunable Synthesis of Hierarchical Yolk/Double-Shelled SiO x @TiO 2 @C Nanospheres for High-Performance Lithium-Ion Batteries. Chemistry 2021; 27:2654-2661. [PMID: 32866338 DOI: 10.1002/chem.202003246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Indexed: 11/12/2022]
Abstract
This work reports the preparation of unique hierarchical yolk/double-shelled SiOx @TiO2 @C nanospheres with different voids by a facile sol-gel method combined with carbon coating. In the preparation process, SiOx nanosphere is used as a hard template. Etch time of SiOx yolk affects the morphology and electrochemical performance of SiOx @TiO2 @C. With the increase in etch time, the yolk/double-shelled SiOx @TiO2 @C with 15 and 30 nm voids and the TiO2 @C hollow nanospheres are obtained. The yolk/double-shelled SiOx @TiO2 @C nanospheres exhibit remarkable lithium-ion battery performance as anodes, including high lithium storage capacity, outstanding rate capability, good reversibility, and stable long-term cycle life. The unique structure can accommodate the large volume change of the SiOx yolk, provide a unique buffering space for the discharge/charge processes, improve the structural stability of the electrode material during repeated Li+ intercalation/deintercalation processes, and enhance the cycling stability. The SiOx @TiO2 @C with 30 nm void space exhibits a high discharge specific capacity of ≈1195.4 mA h g-1 at the current density of 0.1 A g-1 after 300 cycles and ≈701.1 mA h g-1 at 1 A g-1 for over 800 cycles. These results suggest that the proposed particle architecture is promising and may have potential applications in improving various high performance anode materials.
Collapse
Affiliation(s)
- Qinghua Gong
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Haiqing Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Wenhua Song
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China.,School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Bin Sun
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Pei Cao
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Xuefeng Sun
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China
| |
Collapse
|