1
|
Bautista-Nava J, Porras-Santos LF, Quintero L, Pérez-Bautista JA, López-Mendoza P, Sartillo-Piscil F. Oxa-Ferrier Rearrangement Reaction Mediated by TEMPO Cation and NaClO 2: Application to the Total Synthesis of Passifetilactones B and C. J Org Chem 2025. [PMID: 40293861 DOI: 10.1021/acs.joc.5c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The TEMPO+ (2,2,6,6-tetramethylpiperidine-N-oxyl cation) is a versatile chemical species commonly known as an oxidizing reagent. Nevertheless, its capability to act as a Lewis acid has been recently revealed. Here, we report a TEMPO+-promoted oxa-Ferrier rearrangement of glycals to chiral α,β-unsaturated δ-lactones using sodium chlorite (NaClO2) as a cheap and environmentally friendly oxidizing reagent. Since the vinylic oxocarbenium intermediate is trapped by chlorite ion to form a carbonyl group, we name this reaction as the "Oxa-Ferrier rearrangement". Accordingly, this reaction is suitable for various O-acetylated, O-benzoylated, and O-benzylated glycals, providing the corresponding α,β-unsaturated δ-lactones in moderate to good yield. Additionally, the synthetic utility of this methodology was applied to the synthesis and confirmation of the absolute configuration of passifetilactones B and C.
Collapse
Affiliation(s)
- Jocelyn Bautista-Nava
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| | - Luis F Porras-Santos
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| | - José Alvano Pérez-Bautista
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| | - Pedro López-Mendoza
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| |
Collapse
|
2
|
Porras-Santos LF, Sandoval-Lira J, Hernández-Pérez JM, Quintero L, López-Mendoza P, Sartillo-Piscil F. Ferrier Glycosylation Mediated by the TEMPO Oxoammonium Cation. J Org Chem 2024; 89:11281-11292. [PMID: 39102649 PMCID: PMC11334189 DOI: 10.1021/acs.joc.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The TEMPO oxoammonium cation has been proven to be both an efficient oxidizing reagent and an electrophilic substrate frequently found in organic reactions. Here, we report that this versatile chemical reagent can also be used as an efficient promoter for C- and N-glycosylation reactions through a Ferrier rearrangement with moderate to high yields. This unprecedented reactivity is explained in terms of a Lewis acid activation of glycal by TEMPO+ forming a type of glycal-TEMPO+ mesomeric structure, which occurs through an extended vinylogous hyperconjugation toward the π*(O═N+) orbital [LP(O1) → π*(C1═C2), π*(C1═C2) → σ*(C3-O3), and LP(O6) → π*(O═N+)]. This enables the formation of the respective Ferrier glycosyl cation, which is trapped by various nucleophiles. The extended hyperconjugation (or double hyperconjugation) toward the π*(O═N+) orbital, which confers the Lewis acid character of the TEMPO cation, was supported by natural bond orbital analysis at the M06-2X/6-311+G** level of theory.
Collapse
Affiliation(s)
- Luis F Porras-Santos
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Jacinto Sandoval-Lira
- Departamento de Ciencias Básicas, TecNM campus Instituto Tecnológico Superior de San Martín Texmelucan, Camino a la Barranca de Pesos, San Martín Texmelucan 74120, Puebla, Mexico
| | - Julio M Hernández-Pérez
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Pedro López-Mendoza
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| |
Collapse
|
3
|
Nolasco-Hernández Á, Quintero L, Cruz-Gregorio S, Sartillo-Piscil F. β-Alkenylation of Saturated N-Heterocycles via a C(sp 3)-O Bond Wittig-like Olefination. J Org Chem 2024; 89:1762-1768. [PMID: 38215398 PMCID: PMC10845111 DOI: 10.1021/acs.joc.3c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Although the C-Hα functionalization of N-heterocycles is, in fact, an easy chemical transformation, the C-Hβ functionalization is, on the contrary, a quite difficult chemical process. Here, we present a two-step protocol that allows the ready conversion of pyrrolidines, piperidines, and an azepane into their corresponding 3-exo-alkenyl lactams via the transient formation of 3-alkoxyamino lactams followed by a Wittig-like C(sp3)-O bond olefination with stabilized ylides from phosphonium salts mediated by t-BuOK. Additionally, as a proof of the synthetic effectiveness of this novel methodology, the first synthesis of the natural product callylactam A was achieved through a TiCl4-catalyzed double bond isomerization of a 3-exo-alkenyl 2-piperidone to its endo-isomer.
Collapse
Affiliation(s)
- Ángel
A. Nolasco-Hernández
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570 Puebla, México
| | - Leticia Quintero
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570 Puebla, México
| | - Silvano Cruz-Gregorio
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570 Puebla, México
| | - Fernando Sartillo-Piscil
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570 Puebla, México
| |
Collapse
|
4
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
5
|
Zou CP, Ma T, Qiao XX, Wu XX, Li G, He Y, Zhao XJ. B(C 6F 5) 3-catalyzed β-C(sp 3)-H alkylation of tertiary amines with 2-aryl-3 H-indol-3-ones. Org Biomol Chem 2023; 21:4393-4397. [PMID: 37161837 DOI: 10.1039/d3ob00481c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The β-C-H functionalization of amines is one of the most powerful tools for the synthesis of saturated nitrogen-containing heterocycles in organic synthesis. However, the β-C-H functionalization of amines via redox-neutral addition with cyclic-ketimines is still unprecedented. Herein, the β-C-H functionalization of tertiary amines is described, providing the corresponding 1,3-diamines containing the indolin-3-one moiety in high yields via the B(C6F5)3-catalyzed borrowing hydrogen strategy. According to the experimental results, a possible catalytic cycle has been proposed to rationalize the process of this reaction. Notably, the β-C-H alkylation of amines is external oxidant- and transition-metal-free, which makes a significant contribution to promoting economical chemical synthesis.
Collapse
Affiliation(s)
- Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
6
|
Harawa V, Thorpe TW, Marshall JR, Sangster JJ, Gilio AK, Pirvu L, Heath RS, Angelastro A, Finnigan JD, Charnock SJ, Nafie JW, Grogan G, Whitehead RC, Turner NJ. Synthesis of Stereoenriched Piperidines via Chemo-Enzymatic Dearomatization of Activated Pyridines. J Am Chem Soc 2022; 144:21088-21095. [DOI: 10.1021/jacs.2c07143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vanessa Harawa
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Thomas W. Thorpe
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - James R. Marshall
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jack J. Sangster
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Amelia K. Gilio
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rachel S. Heath
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Antonio Angelastro
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - James D. Finnigan
- Prozomix, Building 4, West End Ind. Estate, Haltwhistle NE49 9HA, United Kingdom
| | - Simon J. Charnock
- Prozomix, Building 4, West End Ind. Estate, Haltwhistle NE49 9HA, United Kingdom
| | - Jordan W. Nafie
- BioTools, Inc., 17546 Bee Line Highway, Jupiter, Florida 33478, United States
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Roger C. Whitehead
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicholas J. Turner
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
7
|
Kuram MR, Yadav S, Chaudhary D, Maurya NK, Kumar D, Km I. Transfer hydrogenation of pyridinium and quinolinium species using ethanol as a hydrogen source to access saturated N-heterocycles. Chem Commun (Camb) 2022; 58:4255-4258. [DOI: 10.1039/d2cc00241h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic transfer hydrogenation (TH) for the reduction of heterocycles is an emerging strategy for accessing biologically active saturated N-heterocycles. Herein, we report a TH protocol that utilizes ethanol as a...
Collapse
|
8
|
Ge Y, Ye F, Yang J, Spannenberg A, Jiao H, Jackstell R, Beller M. Palladium-Catalyzed Cascade Carbonylation to α,β-Unsaturated Piperidones via Selective Cleavage of Carbon-Carbon Triple Bonds. Angew Chem Int Ed Engl 2021; 60:22393-22400. [PMID: 34382728 PMCID: PMC8519052 DOI: 10.1002/anie.202108120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Indexed: 12/23/2022]
Abstract
A direct and selective synthesis of α,β-unsaturated piperidones by a new palladium-catalyzed cascade carbonylation is described. In the presented protocol, easily available propargylic alcohols react with aliphatic amines to provide a broad variety of interesting heterocycles. Key to the success of this transformation is a remarkable catalytic cleavage of the present carbon-carbon triple bond by using a specific catalyst with 2-diphenylphosphinopyridine as ligand and appropriate reaction conditions. Mechanistic studies and control experiments revealed branched unsaturated acid 11 as crucial intermediate.
Collapse
Affiliation(s)
- Yao Ge
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Fei Ye
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceHangzhou Normal UniversityNo. 2318, Yuhangtang Road311121HangzhouP. R. China
| | - Ji Yang
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
9
|
Ge Y, Ye F, Yang J, Spannenberg A, Jiao H, Jackstell R, Beller M. Palladium‐Catalyzed Cascade Carbonylation to α,β‐Unsaturated Piperidones via Selective Cleavage of Carbon–Carbon Triple Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yao Ge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Fei Ye
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang Province Hangzhou Normal University No. 2318, Yuhangtang Road 311121 Hangzhou P. R. China
| | - Ji Yang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
10
|
He Y, Zheng Z, Yang J, Zhang X, Fan X. Recent advances in the functionalization of saturated cyclic amines. Org Chem Front 2021. [DOI: 10.1039/d1qo00171j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functionalized cyclic amines are the essential structural moieties of numerous biologically active compounds. This review summarized the most recent advances in the C–H, C–N and C–C bond functionalization of saturated cyclic amines.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Zhi Zheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Jintao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| |
Collapse
|
11
|
Sartillo-Piscil F, Romero-Ibañez J, Fuentes L. Transition-Metal-Free Functionalization of Saturated and Unsaturated Amines to Bioactive Alkaloids Mediated by Sodium Chlorite. Synlett 2020. [DOI: 10.1055/a-1308-0247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractNew approaches to the synthesis of alkaloids through the straightforward functionalization of C(sp3)–H and C(sp2)=C(sp2) bonds of simple five- and six-membered-ring N-heterocycles are highlighted. The direct functionalization of pre-existing N-heterocycles to advanced alkaloids intermediates is a chemical operation that commonly requires the intervention of transition or precious metals. Regardless the inherent unwanted waste production, the high economical cost of many transition-metal catalysts limits their use globally. Here, we account our efforts directed toward the synthesis of bioactive alkaloids under an economic and ecological fashion by using NaClO2 as the key activating or oxidizing reagent that substitutes the use of transition-metal catalysts. While undesired metal wastes are collected during the extraction process of a transition-metal-catalyzed reaction, innocuous NaCl is the commonly product waste when NaClO2 is employed in our chemical transformations. Beginning with the synthesis of 2,3-epoxyamides from allyl amines, we concluded with the functionalization of multiple and remote C(sp3)–H and C(sp3)–C(sp3) bonds in piperidine rings that enabled the preparation of important bioactive alkaloids. For the latter functionalization, a precise amount of co-oxidant reagent (NaOCl) and radical 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) were needed.1 Introduction2 Direct Chemical Method for Preparing 2,3-Epoxyamides3 Dual C(sp3)–H Oxidation of Cyclic Amines to 3‑Alkoxyamine Lactams4 Electrochemical Deamination of 3-Alkoxyamine Lactams5 Direct C–H Oxidation of Piperazines and Morpholines to 2,3-Diketopiperazines and 3-Morpholinones, Respectively6 Transition-Metal-Free Triple C–H Oxidation7 Deconstructive Lactamization of Piperidines8 Conclusion
Collapse
|