1
|
Debsharma T, Nguyen LT, Maliszewski BP, Fischer SM, Scholiers V, Winne JM, Nolan SP, Du Prez FE. Eliminating creep in vitrimers using temperature-resilient siloxane exchange chemistry and N-heterocyclic carbenes. Chem Sci 2025:d4sc06278g. [PMID: 40303456 PMCID: PMC12035752 DOI: 10.1039/d4sc06278g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
This study explores a novel N-heterocyclic carbene-mediated siloxane exchange mechanism, laying the foundation for designing covalent adaptable networks (CANs) with high temperature stability (>200 °C) for dynamic covalent chemistry. Small molecule siloxane compounds, obtained by hydrosilylation reactions, are used to demonstrate siloxane-exchange via a mechanism supported by density functional theory. The proposed mechanism presents an equilibrium, at elevated temperatures, between an imidazolium salt and its free carbene form, which is the catalytically active species. Following this mechanistic insight, a tetra-substituted ester-terminated siloxane cross-linker was synthesized and cured with a commercial amine hardener. The ensuing ester-amine reaction yields thermally stable, non-dynamic amide bonds, thereby enhancing material stability. The resulting CANs exhibit rapid stress relaxation at elevated temperatures and demonstrate successful recycling through compression molding without any significant loss of material properties. Remarkably, the synthesized material showcases high creep resistance, even up to 150 °C, indicating the benefits of having a thermally reversible catalyst system for siloxane activation. This ground-up design of dynamic chemistry and material synthesis not only presents innovative material design but also suggests avenues for exploring thermally stable, fast-exchanging and yet creep-resistant CANs.
Collapse
Affiliation(s)
- Tapas Debsharma
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302 Kharagpur India
| | - Loc Tan Nguyen
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Benon P Maliszewski
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University Krijgslaan 281-S3 9000 Ghent Belgium
| | - Susanne M Fischer
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Vincent Scholiers
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University Krijgslaan 281-S3 9000 Ghent Belgium
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| |
Collapse
|
2
|
Saito R, Prato A, Rubbi A, Orian L, Scattolin T, Nolan SP. Simple synthesis of [Au(NHC)X] complexes utilizing aqueous ammonia: revisiting the weak base route mechanism. Dalton Trans 2024; 54:59-64. [PMID: 39618304 DOI: 10.1039/d4dt02955k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aqueous ammonia has been examined as a new weak base for the synthesis of [Au(NHC)Cl] complexes, as well as for the activation of C-H, S-H, and N-H bonds. Its low cost and mild operational conditions (in air and using technical grade solvents) make it an attractive alternative for producing gold-NHC complexes. Synthetic pathways have been investigated in silico, assessing the role of the deprotonation and metalation steps within the reaction mechanisms.
Collapse
Affiliation(s)
- Riku Saito
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium.
| | - Alberto Prato
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Alessandro Rubbi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Arnaut P, Bracho Pozsoni N, Nahra F, Tzouras NV, Nolan SP. Synthesis and reactivity of N-heterocyclic carbene (NHC) gold-fluoroalkoxide complexes. Dalton Trans 2024; 53:11952-11958. [PMID: 38958393 DOI: 10.1039/d4dt01402b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We disclose a novel series of N-heterocyclic carbene (NHC) gold complexes with varied steric and electronic properties, bearing fluorinated alkoxide anions. Early reactivity studies involving these synthons, lead to the synthesis of various complexes of relevance to gold chemistry and catalysis.
Collapse
Affiliation(s)
- Pierre Arnaut
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Nestor Bracho Pozsoni
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
- Materials & Chemistry (MATCH) unit, VITO (Flemish Institute for Technological Research), Boeretang 200, 2400 Mol, Belgium
| | - Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Lorkowski J, Yorkgitis P, Serrato MR, Gembicky M, Pietraszuk C, Bertrand G, Jazzar R. Genuine carbene versus carbene-like reactivity. Angew Chem Int Ed Engl 2024; 63:e202401020. [PMID: 38632078 DOI: 10.1002/anie.202401020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Singlet carbenes are not always isolable and often even elude direct detection. When they escape observation, their formation can sometimes be evidenced by in situ trapping experiments. However, is carbene-like reactivity genuine evidence of carbene formation? Herein, using the first example of a spectroscopically characterized cyclic (amino)(aryl)carbene (CAArC), we cast doubt on the most common carbene trapping reactions as sufficient proof of carbene formation.
Collapse
Affiliation(s)
- Jan Lorkowski
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Patrick Yorkgitis
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Melinda R Serrato
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Milan Gembicky
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Cezary Pietraszuk
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| |
Collapse
|
5
|
Escayola S, Bahri-Laleh N, Poater A. % VBur index and steric maps: from predictive catalysis to machine learning. Chem Soc Rev 2024; 53:853-882. [PMID: 38113051 DOI: 10.1039/d3cs00725a] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Steric indices are parameters used in chemistry to describe the spatial arrangement of atoms or groups of atoms in molecules. They are important in determining the reactivity, stability, and physical properties of chemical compounds. One commonly used steric index is the steric hindrance, which refers to the obstruction or hindrance of movement in a molecule caused by bulky substituents or functional groups. Steric hindrance can affect the reactivity of a molecule by altering the accessibility of its reactive sites and influencing the geometry of its transition states. Notably, the Tolman cone angle and %VBur are prominent among these indices. Actually, steric effects can also be described using the concept of steric bulk, which refers to the space occupied by a molecule or functional group. Steric bulk can affect the solubility, melting point, boiling point, and viscosity of a substance. Even though electronic indices are more widely used, they have certain drawbacks that might shift preferences towards others. They present a higher computational cost, and often, the weight of electronics in correlation with chemical properties, e.g. binding energies, falls short in comparison to %VBur. However, it is worth noting that this may be because the steric index inherently captures part of the electronic content. Overall, steric indices play an important role in understanding the behaviour of chemical compounds and can be used to predict their reactivity, stability, and physical properties. Predictive chemistry is an approach to chemical research that uses computational methods to anticipate the properties and behaviour of these compounds and reactions, facilitating the design of new compounds and reactivities. Within this domain, predictive catalysis specifically targets the prediction of the performance and behaviour of catalysts. Ultimately, the goal is to identify new catalysts with optimal properties, leading to chemical processes that are both more efficient and sustainable. In this framework, %VBur can be a key metric for deepening our understanding of catalysis, emphasizing predictive catalysis and sustainability. Those latter concepts are needed to direct our efforts toward identifying the optimal catalyst for any reaction, minimizing waste, and reducing experimental efforts while maximizing the efficacy of the computational methods.
Collapse
Affiliation(s)
- Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Naeimeh Bahri-Laleh
- Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
- Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Hiroshima, 739-8526, Japan
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
6
|
Mazars F, Zaragoza G, Delaude L. The facile alkylation and iodination of imidazol(in)ium salts in the presence of cesium carbonate. Chem Commun (Camb) 2023; 59:14528-14531. [PMID: 37942885 DOI: 10.1039/d3cc04971j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The alkylation or iodination of imidazol(in)ium salts takes place readily in the presence of Cs2CO3. The procedure is very easy to implement and provides facile and straightforward access to a wealth of C2-substituted azolium salts. Furthermore, a C2α alkylation is also feasible, which extends the chemistry of NHCs and weak bases to their NHO analogues.
Collapse
Affiliation(s)
- François Mazars
- Laboratory of Catalysis, MolSys Research Unit, Université de Liège, Institut de Chimie Organique (B6a), Allée du six Août 13, Liège 4000, Belgium.
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Lionel Delaude
- Laboratory of Catalysis, MolSys Research Unit, Université de Liège, Institut de Chimie Organique (B6a), Allée du six Août 13, Liège 4000, Belgium.
| |
Collapse
|
7
|
Neshat A, Mahdavi A, Yousefshahi MR, Cheraghi M, Eigner V, Kucerakova M, Dusek M, Rezaie F, Kaboudin B. Heteroleptic Silver(I) and Gold(I) N-Heterocyclic Carbene Complexes: Structural Characterization, Computational Analysis, Tyrosinase Inhibitory, and Biological Effects. Inorg Chem 2023; 62:16710-16724. [PMID: 37788161 DOI: 10.1021/acs.inorgchem.3c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Derivatization of (NHC)M-Cl (M = Ag, Au) with selected sulfur donors from the family of dialkyldithiophosphates and bis(2-mercapto-1-methylimidazolyl)borate ligands gave a series of heteroleptic mononuclear complexes. In single-crystal X-ray diffraction analysis, Ag(I) complexes adopted a trigonal planar geometry, while Au(I) complexes are near-linear. TD-DFT and hole-electron analyses of the selected complexes gave insight into the electronic features of the metal complexes. In vitro cellular tests were conducted on the human cancerous breast cell line MCF-7 using 2 and 8. The antibacterial activities of complexes 1, 2, 3, 7, 8, and IPr-Ag-Cl were also screened against Gram-positive (Staphylococcus aureus PTCC 1112) and Gram-negative (Escherichia coli PTCC 1330) bacteria. Antityrosinase and hemolytic effects of the selected compounds were also determined.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mohammad Reza Yousefshahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mahdi Cheraghi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Vaclav Eigner
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Monika Kucerakova
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Forough Rezaie
- Department of Chemistry, Shahid Chamran University of Ahvaz, Ahwaz 6135783151, Iran
| | - Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| |
Collapse
|
8
|
Li Y, Zhang M, Zhang Z. Mechanisms and Stereoselectivities in the NHC-Catalyzed [4 + 2] Annulation of 2-Bromoenal and 6-Methyluracil-5-carbaldehyde. J Org Chem 2023; 88:12997-13008. [PMID: 37642149 DOI: 10.1021/acs.joc.3c01015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
To disclose the reaction mechanism and selectivity in the NHC-catalyzed reaction of 2-bromoenal and 6-methyluracil-5-carbaldehyde, a systematic computational study has been performed. According to DFT computations, the catalytic cycle is divided into eight elementary steps: nucleophilic attack of the NHC on 2-bromoenal, 1,2-proton transfer, C-Br bond dissociation, 1,3-proton transfer, addition to 6-methyluracil-5-carbaldehyde, [2 + 2] cycloaddition, NHC dissociation, and decarboxylation. The Bronsted acid DABCO·H+ plays a crucial role in proton transfer and decarboxylation steps. The addition to 6-methyluracil-5-carbaldehyde determines both chemoselectivity and stereoselectivity, leading to R-configured carbocycle-fused uracil, in agreement with experimental results. NCI analysis indicates that the CH···N, CH···π, and LP···π interactions should be the key factor for determining the stereoselectivity. ELF analysis shows the main role of the NHC in promoting C-Br bond dissociation. The mechanistic insights obtained in the present work may guide the rational design of potential NHC catalysts.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Mingchao Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| |
Collapse
|
9
|
Rahman M, Gao P, Zhao Q, Lalancette R, Szostak R, Szostak M. [Au(Np #)Cl]: Highly Reactive and Broadly Applicable Au(I)─NHC Catalysts for Alkyne π-Activation Reactions. Catal Sci Technol 2023; 13:5131-5139. [PMID: 38464950 PMCID: PMC10923537 DOI: 10.1039/d3cy00717k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cationic Au(I)─NHC (NHC = N-heterocyclic carbene) complexes have become an important class of catalysts for alkyne π-activation reactions in organic synthesis. In particular, these complexes are characterized by high stability of catalytic species engendered by strong σ-donation and metal backbonding. Herein, we report the synthesis and characterization of well-defined [Au(NHC)Cl] complexes featuring recently discovered IPr# family of ligands that hinge upon modular peralkylation of aniline. These ligands have been commercialized in collaboration with MilliporeSigma (IPr#: 915653; Np#: 915912; BIAN-IPr#: 916420). Evaluation of the [Au(NHC)Cl] complexes in a series of Au(I)─NHC-catalyzed π-functionalizations of alkynes, such as hydrocarboxylation, hydroamination and hydration, resulted in the identification of wingtip-flexible [Au(Np#)Cl] as a highly reactive and broadly applicable catalyst with the re-activity outperforming the classical [Au(IPr)Cl] and [Au(IPr*)Cl] complexes. The utility of this catalyst has been demonstrated in the direct late-stage derivatization of complex pharmaceuticals. Structural and computational studies were conducted to determine steric effects, frontier molecular orbitals and bond orders of this class of catalysts. Considering the attractive features of well-defined Au(I)─NHC complexes, we anticipate that this class of bulky and wingtip-flexible Au(I)─NHCs based on the modular peralkylated naphthylamine scaffold will find broad application in π-functionalization of alkynes in various areas of organic synthesis and catalysis.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
10
|
Shahid N, Singh RK, Srivastava N, Singh AK. Base-free synthesis of benchtop stable Ru(III)-NHC complexes from RuCl 3·3H 2O and their use as precursors for Ru(II)-NHC complexes. Dalton Trans 2023; 52:4176-4185. [PMID: 36892246 DOI: 10.1039/d3dt00243h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A series of Ru(III)-NHC complexes, identified as [RuIII(PyNHCR)(Cl)3(H2O)] (1a-c), have been prepared, starting from RuCl3·3H2O following a base-free route. The Lewis acidic Ru(III) centre operates via a halide-assisted, electrophilic C-H activation for carbene generation. The best results were obtained with azolium salts having the I- anion, while ligand precursors with Cl-, BF4-, and PF6- gave no complex formation and those with Br- gave a product with mixed halides. The structurally simple, air and moisture-stable complexes represent rare examples of paramagnetic Ru(III)-NHC complexes. Furthermore, these benchtop stable Ru(III)-NHC complexes were shown to be excellent metal precursors for the synthesis of new [RuII(PyNHCR)(Cl)2(PPh3)2] (2a-c) and [RuII(PyNHCR)(CNCMe)I]PF6 (3a-c) complexes. All the complexes have been characterised using spectroscopic methods, and the structures of 1a, 1b, 2c, and 3a have been determined using the single-crystal X-ray diffraction technique. This work allows easy access to new Ru-NHC complexes for the study of new properties and novel applications.
Collapse
Affiliation(s)
- Nida Shahid
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Rahul Kumar Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Navdeep Srivastava
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Amrendra K Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
11
|
Rosero-Mafla MA, Zapata-Rivera J, Gimeno MC, Visbal R. Steric and Electronic Effects in N-Heterocyclic Carbene Gold(III) Complexes: An Experimental and Computational Study. Molecules 2022; 27:molecules27238289. [PMID: 36500397 PMCID: PMC9740751 DOI: 10.3390/molecules27238289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A series of neutral acridine-based gold(III)-NHC complexes containing the pentafluorophenyl (-C6F5) group were synthesized. All of the complexes were fully characterized by analytical techniques. The square planar geometry around the gold center was confirmed by X-ray diffraction analysis for complexes 1 (Trichloro [1-methyl-3-(9-acridine)imidazol-2-ylidene]gold(III)) and 2 (Chloro-bis(pentafluorophenyl)[1-methyl-3-(9-acridine)imidazol-2-ylidene]gold(III)). In both cases, the acridine rings play a key role in the crystal packing of the solid structures by mean of π-π stacking interactions, with centroid-centroid and interplanar distances being similar to those found in other previously reported acridine-based Au(I)-NHC complexes. A different reactivity when using a bulkier N-heterocyclic carbene ligand such as 1,3-bis-(2,6-diisopropylphenyl)-2-imidazolidinylidene (SIPr) was observed. While the use of the acridine-based NHC ligand led to the expected organometallic gold(III) species, the steric hindrance of the bulky SIPr ligand led to the formation of the corresponding imidazolinium cation stabilized by the tetrakis(pentafluorophenyl)aurate(III) [Au(C6F5)4]- anion. Computational experiments were carried out in order to figure out the ground state electronic structure and the binding formation energy of the complexes and, therefore, to explain the observed reactivity.
Collapse
Affiliation(s)
- Miguel A. Rosero-Mafla
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, A.A. 25360, Cali 760042, Colombia
| | - Jhon Zapata-Rivera
- Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Cra 1 No 18A—12, Bogotá 111711, Colombia
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (M.C.G.); (R.V.)
| | - Renso Visbal
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, A.A. 25360, Cali 760042, Colombia
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, A.A. 25360, Cali 760031, Colombia
- Correspondence: (M.C.G.); (R.V.)
| |
Collapse
|
12
|
Siddhartha, Rangarajan S, Kunchur HS, Balakrishna MS. A greener approach towards the synthesis of N-heterocyclic thiones and selones using the mechanochemical technique. Dalton Trans 2022; 51:15750-15761. [PMID: 36178103 DOI: 10.1039/d2dt02322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript describes the synthesis of N-heterocyclic thiones and selones of a variety of imidazolium salts involving an eco-friendly and solventless ball-milling technique. The products have been isolated in almost quantitative yield, involving a minimum quantity of solvents only for the isolation of products by column chromatography, and in some cases for purification purposes. Both mono- and bisimidazolium salts afforded N-heterocyclic thiones and selones. The methodology is found to be superior in terms of reaction time, yield and energy efficiency as compared to conventional solution-state reactions.
Collapse
Affiliation(s)
- Siddhartha
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Shalini Rangarajan
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Harish S Kunchur
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
13
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing 1,1-Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin-2-ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022; 61:e202202637. [PMID: 35362643 PMCID: PMC9400972 DOI: 10.1002/anie.202202637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Herein we report secondary pyrrolidin-2-ols as a source of cyclic (alkyl)(amino)carbenes (CAAC) for the synthesis of CAAC-CuI -complexes and cyclic thiones when reacted with CuI -salts and elemental sulfur, respectively, under reductive elimination of water from the carbon(IV)-center. This result demonstrates a convenient and facile access to CAAC-based CuI -salts, which are well known catalysts for different organic transformations. It further establishes secondary alcohols to be a viable source of carbenes-realizing after 185 years Dumas' dream who tried to prepare the parent carbene (CH2 ) by 1,1-dehydration of methanol. Addressed is also the reactivity of water towards CAACs, which proceeds through an oxidative addition of the O-H bond to the carbon(II)-center. This emphasizes the ability of carbon-compounds to mimic the reactivity of transition-metal complexes: reversible oxidative addition and reductive elimination of the O-H bond to/from the C(II)/C(IV)-centre.
Collapse
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | | | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| |
Collapse
|
14
|
Maliszewski BP, Ritacco I, Beliš M, Hashim II, Tzouras NV, Caporaso L, Cavallo L, Van Hecke K, Nahra F, Cazin CSJ, Nolan SP. A green route to platinum N-heterocyclic carbene complexes: mechanism and expanded scope. Dalton Trans 2022; 51:6204-6211. [PMID: 35357386 DOI: 10.1039/d2dt00504b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sustainable and facile weak-base synthetic route to platinum N-heterocyclic carbene (NHC) complexes is disclosed. The mechanism of this reaction is also elucidated via experimental and computational investigations. This straightforward protocol is then used for the synthesis of novel Pt(II)-NHC complexes and its utility is further explored to access key Pt(0)-NHC precatalysts.
Collapse
Affiliation(s)
- Benon P Maliszewski
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium. .,VITO (Flemish Institute for Technological Research), Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium
| | - Ida Ritacco
- Dipartimento di Chimica e Biologia, Univeristy of Salerno, Via Papa Paolo Giovanni II, Fisciano, I-84084, Italy
| | - Marek Beliš
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium.
| | - Ishfaq Ibni Hashim
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium.
| | - Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium.
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, Univeristy of Salerno, Via Papa Paolo Giovanni II, Fisciano, I-84084, Italy
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium.
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium. .,VITO (Flemish Institute for Technological Research), Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium.
| |
Collapse
|
15
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing the 1,1‐Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin‐2‐ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | | | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | - Cem B. Yildiz
- Aksaray Universitesi Aromatic and Medicinal Plants TURKEY
| | - Anukul Jana
- TIFR Centre for Interdisciplinary Sciences Chemical Science 21, Brundavan Colony, Narsingi 500075 Hyderabad INDIA
| |
Collapse
|
16
|
Ma X, Tzouras NV, Peng M, Van Hecke K, Nolan SP. Azolium Aurates as Pre-Catalysts for the Oxidative Coupling of Terminal Alkynes under Mild Conditions. J Org Chem 2022; 87:4883-4893. [PMID: 35315665 DOI: 10.1021/acs.joc.2c00237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A simple and efficient method for the oxidative coupling of terminal alkynes is reported for the first time, making use of imidazol(in)ium aurates as pre-catalysts. This approach displays high functional group tolerance and leads to a broad range of 1,3-diyne compounds in moderate to excellent yields using low catalyst loading and is performed in air under mild and sustainable conditions.
Collapse
Affiliation(s)
- Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium
| | - Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium
| | - Min Peng
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Scattolin T, Pessotto I, Cavarzerani E, Canzonieri V, Orian L, Demitri N, Schmidt C, Casini A, Bortolamiol E, Visentin F, Rizzolio F, Nolan SP. Indenyl and allyl palladate complexes bearing N‐heterocyclic carbene ligands: an easily accessible class of new anticancer drug candidates. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thomas Scattolin
- Ca' Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari Via Torino 155 30037 Mestre ITALY
| | - Ilenia Pessotto
- Ca' Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi ITALY
| | - Enrico Cavarzerani
- Ca' Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi ITALY
| | | | - Laura Orian
- University of Padova: Universita degli Studi di Padova Scienze Chimiche ITALY
| | - Nicola Demitri
- Elettra Sincrotrone Trieste SCpA elettra sincrotrone ITALY
| | - Claudia Schmidt
- Munich University of Technology: Technische Universitat Munchen Chemistry GERMANY
| | - Angela Casini
- Munich University of Technology: Technische Universitat Munchen Chemistry GERMANY
| | - Enrica Bortolamiol
- Ca'Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi ITALY
| | - Fabiano Visentin
- Ca' Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi ITALY
| | - Flavio Rizzolio
- Ca' Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi ITALY
| | | |
Collapse
|
18
|
Cauwenbergh T, Scattolin T, Simoens A, Tzouras NV, Stevens CV, Nolan SP. Continuous Flow Synthesis of Sulfur‐ and Selenium−NHC Compounds (NHC=
N
‐Heterocyclic Carbene). European J Org Chem 2022. [DOI: 10.1002/ejoc.202101296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thibault Cauwenbergh
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| | - Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| | - Andreas Simoens
- Department of Green Chemistry and Technology Synthesis Biosources and Bioorganic Chemistry (SynBioC) Research Group Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| | - Christian V. Stevens
- Department of Green Chemistry and Technology Synthesis Biosources and Bioorganic Chemistry (SynBioC) Research Group Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| |
Collapse
|
19
|
Scattolin T, Lippmann P, Beliš M, Van Hecke K, Ottb I, Nolan SP. A simple synthetic entryway into (N‐heterocyclic carbene)gold‐steroidyl complexes and their anticancer activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Braunschweig Germany
| | - Marek Beliš
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Ingo Ottb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Braunschweig Germany
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| |
Collapse
|
20
|
De Marco R, Dal Grande M, Baron M, Orian L, Graiff C, Achard T, Bellemin‐Laponnaz S, Pöthig A, Tubaro C. Synthesis, Structural Characterization and Antiproliferative Activity of Gold(I) and Gold(III) Complexes Bearing Thioether‐Functionalized N‐Heterocyclic Carbenes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Riccardo De Marco
- Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-Université de Strasbourg UMR7504 23 rue du Loess BP 43, 67034 Strasbourg France
| | - Marco Dal Grande
- Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - Marco Baron
- Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università degli Studi di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-Université de Strasbourg UMR7504 23 rue du Loess BP 43, 67034 Strasbourg France
| | - Stéphane Bellemin‐Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-Université de Strasbourg UMR7504 23 rue du Loess BP 43, 67034 Strasbourg France
| | - Alexander Pöthig
- Department of Chemistry & Catalysis Research Center Technische Universität München Ernst-Otto-Fischer-Straße 1 Garching bei München 85748 Germany
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
21
|
Ma X, Guillet SG, Liu Y, Cazin CSJ, Nolan SP. Simple synthesis of [Ru(CO 3)(NHC)( p-cymene)] complexes and their use in transfer hydrogenation catalysis. Dalton Trans 2021; 50:13012-13019. [PMID: 34581364 DOI: 10.1039/d1dt02098f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel, efficient and facile protocol for the synthesis of a series of [Ru(NHC)(CO3)(p-cymene)] complexes is reported. This family of Ru-NHC complexes was obtained from imidazol(in)ium tetrafluoroborate or imidazolium hydrogen carbonate salts in moderate to excellent yields, employing sustainable weak base. The ruthenium complexes were successfully utilized in the transfer hydrogenation of ketones as highly active multifunctional catalysts.
Collapse
Affiliation(s)
- Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Sébastien G Guillet
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Yaxu Liu
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Gauthier ES, Cordier M, Dorcet V, Vanthuyne N, Favereau L, Williams JAG, Crassous J. Helically Chiral NHC‐Gold(I) Complexes: Synthesis, Chiroptical Properties and Electronic Features of the [5]Helicene‐Imidazolylidene Ligand. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Marie Cordier
- Univ Rennes CNRS, ISCR – UMR 6226 35000 Rennes France
| | | | - Nicolas Vanthuyne
- Aix Marseille University CNRS Centrale Marseille, iSm2 13284 Marseille France
| | | | | | | |
Collapse
|
23
|
Voloshkin VA, Tzouras NV, Nolan SP. Recent advances in the synthesis and derivatization of N-heterocyclic carbene metal complexes. Dalton Trans 2021; 50:12058-12068. [PMID: 34519733 DOI: 10.1039/d1dt01847g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
N-heterocyclic carbene (NHC) metal complexes have gained an incredible amount of attention in the course of the last two decades and have become indispensable as an intricate part of a plethora of applications. The areas of their synthesis and derivatization are constantly evolving and bring new, more sustainable, cost-effective and simpler approaches to the design of existing and next generation catalysts and materials. This article provides an overview of the latest developments, focusing on those which have appeared during the last two years.
Collapse
Affiliation(s)
- Vladislav A Voloshkin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium.
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Guillet SG, Pisanò G, Chakrabortty S, Müller BH, Vries JG, Kamer PCJ, Cazin CSJ, Nolan SP. A Simple Synthetic Route to [Rh(acac)(CO)(NHC)] Complexes: Ligand Property Diagnostic Tools and Precatalysts. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sébastien G. Guillet
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Gianmarco Pisanò
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Soumyadeep Chakrabortty
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Bernd H. Müller
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Johannes G. Vries
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Paul C. J. Kamer
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Steven. P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| |
Collapse
|
25
|
Cauwenbergh T, Tzouras NV, Scattolin T, Bhandary S, Simoens A, Van Hecke K, Stevens CV, Nolan SP. Continuous Flow Synthesis of [Au(NHC)(Aryl)] (NHC=N-Heterocyclic Carbene) Complexes. Chemistry 2021; 27:13342-13345. [PMID: 34323322 DOI: 10.1002/chem.202102379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 11/09/2022]
Abstract
The use of weak and inexpensive bases has recently opened promising perspectives towards the simpler and more sustainable synthesis of Au(I)-aryl complexes with valuable applications in catalysis, medicinal chemistry, and materials science. In recent years, continuous manufacturing has shown to be a reliable partner in establishing sustainable and controlled process scalability. Herein, the first continuous flow synthesis of a range of Au(I)-aryl starting from widely available boronic acids and various [Au(NHC)Cl] (NHC=N-heterocyclic carbene) complexes in unprecedentedly short reaction times and high yields is reported. Successful synthesis of previously non- or poorly accessible complexes exposed fascinating reactivity patterns. Via a gram-scale synthesis, convenient process scalability of the developed protocol was showcased.
Collapse
Affiliation(s)
- Thibault Cauwenbergh
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000, Ghent, Belgium
| | - Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000, Ghent, Belgium
| | - Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000, Ghent, Belgium
| | - Subhrajyoti Bhandary
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000, Ghent, Belgium
| | - Andreas Simoens
- Department of Green Chemistry and Technology Synthesis, Biosources and Bioorganic Chemistry (SynBioC) Research Group, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000, Ghent, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology Synthesis, Biosources and Bioorganic Chemistry (SynBioC) Research Group, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000, Ghent, Belgium
| |
Collapse
|
26
|
Abstract
In this contribution, we provide an overview of the main avenues that have emerged in gold coordination chemistry during the last years. The unique properties of gold have motivated research in gold chemistry, and especially regarding the properties and applications of gold compounds in catalysis, medicine, and materials chemistry. The advances in the synthesis and knowledge of gold coordination compounds have been possible with the design of novel ligands becoming relevant motifs that have allowed the preparation of elusive complexes in this area of research. Strong donor ligands with easily modulable electronic and steric properties, such as stable singlet carbenes or cyclometalated ligands, have been decisive in the stabilization of gold(0) species, gold fluoride complexes, gold hydrides, unprecedented π complexes, or cluster derivatives. These new ligands have been important not only from the fundamental structure and bonding studies but also for the synthesis of sophisticated catalysts to improve activity and selectivity of organic transformations. Moreover, they have enabled the facile oxidative addition from gold(I) to gold(III) and the design of a plethora of complexes with specific properties.
Collapse
Affiliation(s)
- Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
27
|
Tzouras NV, Martynova EA, Ma X, Scattolin T, Hupp B, Busen H, Saab M, Zhang Z, Falivene L, Pisanò G, Van Hecke K, Cavallo L, Cazin CSJ, Steffen A, Nolan SP. Simple Synthetic Routes to Carbene-M-Amido (M=Cu, Ag, Au) Complexes for Luminescence and Photocatalysis Applications. Chemistry 2021; 27:11904-11911. [PMID: 34038002 PMCID: PMC8456869 DOI: 10.1002/chem.202101476] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/20/2022]
Abstract
The development of novel and operationally simple synthetic routes to carbene‐metal‐amido (CMA) complexes of copper, silver and gold relevant for photonic applications are reported. A mild base and sustainable solvents allow all reactions to be conducted in air and at room temperature, leading to high yields of the targeted compounds even on multigram scales. The effect of various mild bases on the N−H metallation was studied in silico and experimentally, while a mechanochemical, solvent‐free synthetic approach was also developed. Our photophysical studies on [M(NHC)(Cbz)] (Cbz=carbazolyl) indicate that the occurrence of fluorescent or phosphorescent states is determined primarily by the metal, providing control over the excited state properties. Consequently, we demonstrate the potential of the new CMAs beyond luminescence applications by employing a selected CMA as a photocatalyst. The exemplified synthetic ease is expected to accelerate the applications of CMAs in photocatalysis and materials chemistry.
Collapse
Affiliation(s)
- Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Ekaterina A Martynova
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Benjamin Hupp
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Hendrik Busen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Ziyun Zhang
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Laura Falivene
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Gianmarco Pisanò
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| |
Collapse
|
28
|
Jónsson HF, Fiksdahl A, Harvie AJ. Rapid and mild synthesis of Au-NHC complexes in a simple two-phase flow reactor. Dalton Trans 2021; 50:7969-7975. [PMID: 34075994 DOI: 10.1039/d1dt01357b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a simple two-phase flow reactor which allows for the rapid synthesis of several Au(i)-NHC complexes in high yields (>88%), under mild conditions, and with minimal workup. Translation of the standard weak base method to a two-phase flow reaction prevents the common problem of decomposition to Au(0). The reaction can be scaled up more than ten-fold without loss in conversion efficiency. An optional second stage allows for direct synthesis of Au(iii)-NHC complexes, without isolation of the Au(i)-NHC intermediate, with a two-step isolated yield of 82%.
Collapse
Affiliation(s)
| | - Anne Fiksdahl
- Department of Chemistry, NTNU, NO-7491 Trondheim, Norway.
| | | |
Collapse
|
29
|
Vanden Broeck SMP, Nelson DJ, Collado A, Falivene L, Cavallo L, Cordes DB, Slawin AMZ, Van Hecke K, Nahra F, Cazin CSJ, Nolan SP. Synthesis of Gold(I)-Trifluoromethyl Complexes and their Role in Generating Spectroscopic Evidence for a Gold(I)-Difluorocarbene Species. Chemistry 2021; 27:8461-8467. [PMID: 33822412 DOI: 10.1002/chem.202100195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Readily prepared and bench-stable [Au(CF3 )(NHC)] compounds were synthesized by using new methods, starting from [Au(OH)(NHC)], [Au(Cl)(NHC)] or [Au(L)(NHC)]HF2 precursors (NHC=N-heterocyclic carbene). The mechanism of formation of these species was investigated. Consequently, a new and straightforward strategy for the mild and selective cleavage of a single carbon/fluorine bond from [Au(CF3 )(NHC)] complexes was attempted and found to be reversible in the presence of an additional nucleophilic fluoride source. This straightforward technique has led to the unprecedented spectroscopic observation of a gold(I)-NHC difluorocarbene species.
Collapse
Affiliation(s)
- Sofie M P Vanden Broeck
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland
| | - Alba Collado
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.,Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Falivene
- Universita' di Salerno, Dipartimento di Chimica e Biologia, Via Papa Paolo Giovanni II, 84100, Fisiciano, SA, Italia
| | - Luigi Cavallo
- Universita' di Salerno, Dipartimento di Chimica e Biologia, Via Papa Paolo Giovanni II, 84100, Fisiciano, SA, Italia
| | - David B Cordes
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Alexandra M Z Slawin
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium.,Separation and Conversion Technology Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400, Mol, Belgium
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| |
Collapse
|
30
|
Hall JW, Bouchet D, Mahon MF, Whittlesey MK, Cazin CSJ. Synthetic Access to Ring-Expanded N-Heterocyclic Carbene (RE-NHC) Copper Complexes and Their Performance in Click Chemistry. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan W. Hall
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Damien Bouchet
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 283 (S3), Ghent 9000, Belgium
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | | - Catherine S. J. Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 283 (S3), Ghent 9000, Belgium
| |
Collapse
|
31
|
Liu Y, Voloshkin VA, Scattolin T, Cavallo L, Dereli B, Cazin CSJ, Nolan SP. Conversion of Pd(I) off-cycle species into highly efficient cross-coupling catalysts. Dalton Trans 2021; 50:5420-5427. [PMID: 33908994 DOI: 10.1039/d1dt00929j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the facile conversion of [Pd2(μ-Cl)(μ-η3-R-allyl)(NHC)2] complexes, which are commonly considered undesirable off-cycle species in cross-coupling reactions, into active [PdCl(μ-Cl)(NHC)]2 pre-catalysts. All reactions proceed under mild conditions (40 °C, 1-2 hours in acetone) using inexpensive HCl as both an oxidant and chloride source. DFT calculations were performed to explore the possible mechanism of this transformation, which appears to involve a combination of two different pathways. Moreover this study provides insights into factors favoring and hindering Pd(i) dimer formation undesirable in catalysis.
Collapse
Affiliation(s)
- Yaxu Liu
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Vladislav A Voloshkin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Luigi Cavallo
- KAUST Catalysis Centre, KCC, King Abdullah University of Science and Technology, Thuwal-23955-6900, Saudi Arabia
| | - Busra Dereli
- KAUST Catalysis Centre, KCC, King Abdullah University of Science and Technology, Thuwal-23955-6900, Saudi Arabia
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| |
Collapse
|
32
|
Beerhues J, Neubrand M, Sobottka S, Neuman NI, Aberhan H, Chandra S, Sarkar B. Directed Design of a Au I Complex with a Reduced Mesoionic Carbene Radical Ligand: Insights from 1,2,3-Triazolylidene Selenium Adducts and Extensive Electrochemical Investigations. Chemistry 2021; 27:6557-6568. [PMID: 33502818 PMCID: PMC8252451 DOI: 10.1002/chem.202100105] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/07/2022]
Abstract
Carbene-based radicals are important for both fundamental and applied chemical research. Herein, extensive electrochemical investigations of nine different 1,2,3-triazolylidene selenium adducts are reported. It is found that the half-wave potentials of the first reduction of the selones correlate with their calculated LUMO levels and the LUMO levels of the corresponding triazolylidene-based mesoionic carbenes (MICs). Furthermore, unexpected quasi-reversibility of the reduction of two triazoline selones, exhibiting comparable reduction potentials, was discovered. Through UV/Vis/NIR and EPR spectroelectrochemical investigations supported by DFT calculations, the radical anion was unambiguously assigned to be triazoline centered. This electrochemical behavior was transferred to a triazolylidene-type MIC-gold phenyl complex resulting in a MIC-radical coordinated AuI species. Apart from UV-Vis-NIR and EPR spectroelectrochemical investigations of the reduction, the reduced gold-coordinated MIC radical complex was also formed in situ in the bulk through chemical reduction. This is the first report of a monodentate triazolylidene-based MIC ligand that can be reduced to its anion radical in a metal complex. The results presented here provide design principles for stabilizing radicals based on MICs.
Collapse
Affiliation(s)
- Julia Beerhues
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| | - Maren Neubrand
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sebastian Sobottka
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| | - Nicolás I. Neuman
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Hannes Aberhan
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| | - Shubhadeep Chandra
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| |
Collapse
|
33
|
Beerhues J, Walter RRM, Aberhan H, Neubrand M, Porré M, Sarkar B. Spotlight on Ligand Effects in 1,2,3-Triazolylidene Gold Complexes for Hydroamination Catalysis: Synthesis and Catalytic Application of an Activated MIC Gold Triflimide Complex and Various MIC Gold Chloride Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julia Beerhues
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, D-70569 Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Robert R. M. Walter
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, D-70569 Stuttgart, Germany
| | - Hannes Aberhan
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Maren Neubrand
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, D-70569 Stuttgart, Germany
| | - Marre Porré
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, D-70569 Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
34
|
Mazars F, Hrubaru M, Tumanov N, Wouters J, Delaude L. Synthesis of Azolium‐2‐dithiocarboxylate Zwitterions under Mild, Aerobic Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- François Mazars
- Laboratory of Catalysis MolSys Research Unit Université de Liège Institut de Chimie Organique (B6a) Allée du six Août 13 4000 Liège Belgium
| | - Madalina Hrubaru
- Center for Organic Chemistry “Costin D. Nenitescu” Romanian Academy Spl Independentei Bucureşti, 202B 060023 Bucharest Romania
| | - Nikolay Tumanov
- Department of Chemistry Université de Namur Rue de Bruxelles 61 5000 Namur Belgium
| | - Johan Wouters
- Department of Chemistry Université de Namur Rue de Bruxelles 61 5000 Namur Belgium
| | - Lionel Delaude
- Laboratory of Catalysis MolSys Research Unit Université de Liège Institut de Chimie Organique (B6a) Allée du six Août 13 4000 Liège Belgium
| |
Collapse
|
35
|
Simoens A, Scattolin T, Cauwenbergh T, Pisanò G, Cazin CSJ, Stevens CV, Nolan SP. Continuous Flow Synthesis of Metal–NHC Complexes**. Chemistry 2021; 27:5653-5657. [DOI: 10.1002/chem.202100190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/29/2021] [Indexed: 01/01/2023]
Affiliation(s)
- Andreas Simoens
- Department of Green Chemistry and Technology Synthesis Bioresources and Bioorganic Chemistry Research Group Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Thibault Cauwenbergh
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Gianmarco Pisanò
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Christian V. Stevens
- Department of Green Chemistry and Technology Synthesis Bioresources and Bioorganic Chemistry Research Group Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| |
Collapse
|
36
|
Synthesis of N-heterocyclic carbene gold(I) complexes. Nat Protoc 2021; 16:1476-1493. [PMID: 33504989 DOI: 10.1038/s41596-020-00461-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 11/09/2020] [Indexed: 01/30/2023]
Abstract
N-heterocyclic carbene gold(I) chloride and hydroxide complexes are regularly used as synthons to access various oxygen-, nitrogen- or carbon-bound gold complexes. They are also widely employed as efficient catalysts in addition reactions of hydroelements to unsaturated bonds and in several rearrangement and decarboxylation protocols. Here we describe the multigram synthesis of the most common mononuclear N-heterocyclic carbene gold(I) chloride complexes bearing the N,N'-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and N,N'-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene (IPr*) ligands. Their synthesis is achieved through the straightforward and practical weak base approach in a total time of 4-5 h. This straightforward methodology is conducted under air and possesses considerable advantages over alternative routes, such as the use of a sustainable reaction solvent, minimal amounts of a mild base and commercially available or easily obtained starting materials. Additionally, we describe the synthesis of the mononuclear gold(I) hydroxide complex bearing the IPr ligand, using the state-of-the-art method requiring 24 h. Finally, the improved synthesis of the dinuclear gold(I) hydroxide complex [{Au(IPr)}2(μ-OH)][BF4] is described (~3 h). All procedures can be performed by researchers with standard training and lead to high yields (76-99%) of microanalytically pure bench-stable materials.
Collapse
|
37
|
The mechanism of carboxylative cyclization of propargylamine by N-heterocyclic carbene complexes of Au(I). J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Martynova EA, Tzouras NV, Pisanò G, Cazin CSJ, Nolan SP. The “weak base route” leading to transition metal–N-heterocyclic carbene complexes. Chem Commun (Camb) 2021; 57:3836-3856. [DOI: 10.1039/d0cc08149c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
N-Heterocyclic carbenes (NHCs) are nowadays ubiquitous in organometallic chemistry and catalysis. A simple synthetic route to these is presented.
Collapse
Affiliation(s)
- Ekaterina A. Martynova
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - Gianmarco Pisanò
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
39
|
Ma X, Guillet SG, Peng M, Van Hecke K, Nolan SP. A simple synthesis of [RuCl2(NHC)(p-cymene)] complexes and their use in olefin oxidation catalysis. Dalton Trans 2021; 50:3959-3965. [DOI: 10.1039/d1dt00030f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An operationally simple synthetic route is designed to access the [RuCl2(NHC)(p-cymene)] family of complexes.
Collapse
Affiliation(s)
- Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University
- 9000 Ghent
- Belgium
| | - Sébastien G. Guillet
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University
- 9000 Ghent
- Belgium
| | - Min Peng
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University
- 9000 Ghent
- Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University
- 9000 Ghent
- Belgium
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
40
|
Safir Filho M, Scattolin T, Dao P, Tzouras NV, Benhida R, Saab M, Van Hecke K, Lippmann P, Martin AR, Ott I, Nolan SP. Straightforward synthetic route to gold(i)-thiolato glycoconjugate complexes bearing NHC ligands (NHC = N-heterocyclic carbene) and their promising anticancer activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj02117f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A simple and eco-friendly route to gold–NHC complexes bearing different thiosugars is reported.
Collapse
Affiliation(s)
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Krijgslaan 281 (S-3)
- Ghent
- Belgium
| | - Pascal Dao
- Institut de Chimie de Nice
- Université Côte d’Azur
- CNRS
- UMR7272
- Nice
| | - Nikolaos V. Tzouras
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Krijgslaan 281 (S-3)
- Ghent
- Belgium
| | - Rachid Benhida
- Institut de Chimie de Nice
- Université Côte d’Azur
- CNRS
- UMR7272
- Nice
| | - Marina Saab
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Krijgslaan 281 (S-3)
- Ghent
- Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Krijgslaan 281 (S-3)
- Ghent
- Belgium
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- Beethovenstr. 55
- Braunschweig
- Germany
| | | | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- Beethovenstr. 55
- Braunschweig
- Germany
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Krijgslaan 281 (S-3)
- Ghent
- Belgium
| |
Collapse
|
41
|
|
42
|
Gehrke S, Hollóczki O. N-Heterocyclic Carbene Organocatalysis: With or Without Carbenes? Chemistry 2020; 26:10140-10151. [PMID: 32608090 PMCID: PMC7496998 DOI: 10.1002/chem.202002656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Indexed: 11/18/2022]
Abstract
In this work the mechanism of the aldehyde umpolung reactions, catalyzed by azolium cations in the presence of bases, was studied through computational methods. Next to the mechanism established by Breslow in the 1950s that takes effect through the formation of a free carbene, we have suggested that these processes can follow a concerted asynchronous path, in which the azolium cation directly reacts with the substrate, avoiding the formation of the carbene intermediate. We hereby show that substituting the azolium cation, and varying the base or the substrate do not affect the preference for the concerted reaction mechanism. The concerted path was found to exhibit low barriers also for the reactions of thiamine with model substrates, showing that this path might have biological relevance. The dominance of the concerted mechanism can be explained through the specific structure of the key transition state, avoiding the liberation of the highly reactive, and thus unstable carbene lone pair, whereas activating the substrate through hydrogen-bonding interactions. Polar and hydrogen-bonding solvents, as well as the presence of the counterions of the azolium salts facilitate the reaction through carbenes, bringing the barriers of the two reaction mechanisms closer, in many cases making the concerted path less favorable. Thus, our data show that by choosing the exact components in a reaction, the mechanism can be switched to occur with or without carbenes.
Collapse
Affiliation(s)
- Sascha Gehrke
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 4+653115BonnGermany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 4+653115BonnGermany
| |
Collapse
|
43
|
|
44
|
Tzouras NV, Saab M, Janssens W, Cauwenbergh T, Van Hecke K, Nahra F, Nolan SP. Simple Synthetic Routes to N-Heterocyclic Carbene Gold(I)-Aryl Complexes: Expanded Scope and Reactivity. Chemistry 2020; 26:5541-5551. [PMID: 32077182 DOI: 10.1002/chem.202000876] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 12/31/2022]
Abstract
The discovery of sustainable and scalable synthetic protocols leading to gold-aryl compounds bearing N-heterocyclic carbene (NHC) ligands sparked an investigation of their reactivity and potential utility as organometallic synthons. The use of a mild base and green solvents provide access to these compounds, starting from widely available boronic acids and various [Au(NHC)Cl] complexes, with reactions taking place under air, at room temperature and leading to high yields with unprecedented ease. One compound, (N,N'-bis[2,6-(di-isopropyl)phenyl]imidazol-2-ylidene)(4-methoxyphenyl)gold, ([Au(IPr)(4-MeOC6 H4 )]), was synthesized on a multigram scale and used to gauge the reactivity of this class of compounds towards C-H/N-H bonds and with various acids, revealing simple pathways to gold-based species that possess attractive properties as materials, reagents and/or catalysts.
Collapse
Affiliation(s)
- Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Wim Janssens
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Thibault Cauwenbergh
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
- Separation and Conversion Technology Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, 2400, Mol, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| |
Collapse
|
45
|
Saab M, Nelson DJ, Tzouras NV, A. C. A. Bayrakdar T, Nolan SP, Nahra F, Van Hecke K. Straightforward access to chalcogenoureas derived from N-heterocyclic carbenes and their coordination chemistry. Dalton Trans 2020; 49:12068-12081. [PMID: 32820302 DOI: 10.1039/d0dt02558e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe a straightforward access to chalcogenoureas derived from N-heterocyclic carbenes, and we investigate the coordination chemistry of selenoureas with coinage metals.
Collapse
Affiliation(s)
- Marina Saab
- Department of Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - David J. Nelson
- WestCHEM Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| | | | | | | | - Fady Nahra
- Department of Chemistry
- Ghent University
- 9000 Ghent
- Belgium
- VITO (Flemish Institute for Technological Research)
| | | |
Collapse
|
46
|
Maliszewski BP, Tzouras NV, Guillet SG, Saab M, Beliš M, Van Hecke K, Nahra F, Nolan SP. A general protocol for the synthesis of Pt-NHC (NHC = N-heterocyclic carbene) hydrosilylation catalysts. Dalton Trans 2020; 49:14673-14679. [DOI: 10.1039/d0dt03480k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A simple synthetic route, making use of inexpensive and environment-friendly solvent/reagents, is described leading to [Pt(NHC)(L)Cl2] and [Pt(NHC)(dvtms)] (L = DMS, DMSO, Py; dvtms = divynyltetramethylsiloxane) catalysts.
Collapse
Affiliation(s)
- Benon P. Maliszewski
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Sébastien G. Guillet
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Marek Beliš
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
- VITO (Flemish Institute for Technological Research)
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
47
|
Scattolin T, Tzouras NV, Falivene L, Cavallo L, Nolan SP. Using sodium acetate for the synthesis of [Au(NHC)X] complexes. Dalton Trans 2020; 49:9694-9700. [DOI: 10.1039/d0dt02240c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sodium acetate enables the synthesis of [Au(NHC)Cl] complexes, as well as their Au-alkynyl and -thiolato derivatives in high yields, under air and in technical grade, green solvents. The mild synthetic methods are also investigated computationally.
Collapse
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Nikolaos V. Tzouras
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Laura Falivene
- Department KAUST Catalysis Centre
- KCC
- King Abdullah University of Science and Technology
- Thuwal-23955-6900
- Saudi Arabia
| | - Luigi Cavallo
- Department KAUST Catalysis Centre
- KCC
- King Abdullah University of Science and Technology
- Thuwal-23955-6900
- Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| |
Collapse
|