1
|
Jiao L, Zou Y, Fan W, Han Y, Zhou Q, Shao J, Wu J. Aggregation-Free, Highly Soluble CN-Terminated Dicyclopentadiene-Fused Rylenes. J Am Chem Soc 2025; 147:9415-9423. [PMID: 40053379 DOI: 10.1021/jacs.4c16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Rylenes, known for their excellent photochemical properties, hold great promise in OLEDs, solar cells, and bioimaging applications. However, the solution-phase synthesis of long rylene molecules is often hindered by poor solubility and low stability. In this work, we present an efficient synthetic strategy for a series of CN-terminated rylenes via base-mediated intramolecular Michael addition and oxidative cyclodehydrogenation (Scholl reaction). The synthesized rylenes feature a cyclopentadiene ring at both bay positions of each perylene subunit and electron-deficient CN groups at the peri-termini. These structural modifications render the rylenes stable, aggregation-free, and highly soluble. Bulky aryl groups attached to the cyclopentadiene rings not only improve solubility but also block intermolecular π-aggregation, as revealed by XRD analysis. Additionally, the electron-withdrawing CN groups stabilize the π-conjugated system. The extended π-conjugation reduces the HOMO-LUMO gap, enhancing absorption and inducing a significant bathochromic shift into the NIR I and II regions.
Collapse
Affiliation(s)
- Liuying Jiao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ya Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Qifeng Zhou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiawei Shao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Liu X, Chen B, Wang M, Gu X, Zhang L. Acene-Integrated Buckybowls with Near-Infrared II Absorption and over 90 % Photothermal Conversion Efficiency. Angew Chem Int Ed Engl 2025; 64:e202416160. [PMID: 39289151 DOI: 10.1002/anie.202416160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Tetracene and pentacene are large, promising building blocks for construction of complex molecular nanocarbons due to their extraordinary photophysical and electronic properties. Herein, two acene-integrated buckybowls, composed of two rows of tetracenes and pentacenes fused through s-indacene unit at the zigzag edges, have been synthesized and characterized. Compared to parent tetracene and pentacene, the buckybowls are extremely stable and show much smaller electrochemical band gaps. Kinetic studies gave the bowl-to-bowl inversion barriers of 11.7 and 13.3 kcal mol-1. Subsequent investigations on magnetic ring currents revealed two local diatropic currents at two rows of acenes and one paratropic current at the s-indacene unit, respectively. Notably, both buckybowls show a broad absorption that reaches into near-infrared II region, and a high photothermal conversion efficiency (>90 %) was achieved when exposed to near-infrared 1064 nm laser photo-irradiation. This study highlights the unusual nature of merging the intrinsic properties of acenes with the inherent properties of buckybowls and showcases a potential avenue for acene utilization for the design of novel complex nanocarbons with a broad range of applications.
Collapse
Affiliation(s)
- Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Binjie Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Min Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Elbert SM, Paine OTA, Kirschbaum T, Schuldt MP, Weber L, Rominger F, Mastalerz M. A Negatively Curved Nanographene with Four Embedded Heptagons. J Am Chem Soc 2024; 146:27324-27334. [PMID: 39329251 DOI: 10.1021/jacs.4c09185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Negatively curved nanographenes are considered as cutouts of three-dimensional fully sp2-hybridized carbon allotropes such as Schwarzites. Here we present the synthesis of a C76 cut-out of the Schwarzite 8-4-1-p proposed by Lenosky et al. and investigate its optical as well as electrochemical properties. Furthermore, supramolecular interactions with fullerenes C60 and C70 were studied.
Collapse
Affiliation(s)
- Sven M Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Owen T A Paine
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Moritz P Schuldt
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Laura Weber
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Liu B, Jin Z, Liu X, Sun L, Yang C, Zhang L. π-extended pyrenes: from an antiaromatic buckybowl to doubly curved nanocarbons with gulf architectures. Chem Sci 2024:d4sc03460k. [PMID: 39328190 PMCID: PMC11421037 DOI: 10.1039/d4sc03460k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
The synthesis of π-extended pyrenes keeps attracting considerable attention. In particular, frameworks containing nonbenzenoid rings might display intriguing properties. Here, we report a practical synthetic pathway to access a new buckybowl (1), which is composed of four five-membered rings externally fused to a pyrene core. The buckybowl 1 exhibits antiaromaticity involving 22 π-electrons, a rapid bowl-to-bowl interconversion, and a small band gap. Furthermore, this buckybowl could be subjected to Scholl cyclodehydrogenation to prepare the doubly curved nanocarbons (2rac and 2meso), which exist as two diastereomers, as demonstrated by X-ray crystal structure determination. Variable temperature 1H NMR measurements reveal that 2meso can isomerize into 2rac under thermal conditions, with an activation free energy of 27.1 kcal mol-1. Both the enantiomers of 2rac can be separated by chiral HPLC and their chiroptical properties are thoroughly examined. In addition, the nanocarbon 2meso with two gulf architectures facilitates host-guest chemistry with a variety of guests, including PDI, TDI, C60 and C70.
Collapse
Affiliation(s)
- Binbin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Zhengxiong Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lanfei Sun
- Shandong North Modern Chemistry Industry Co., Ltd Jinan 252300 P. R. China
| | - Cao Yang
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
5
|
Hamaguchi N, Kubota T, Yamada M, Kimura H, Tsuji H. Post-Formation of Fused Pentagonal Structure on Fjord Region of Polyaromatic Hydrocarbons under Hydrothermal Conditions. Chemistry 2024; 30:e202400987. [PMID: 38629239 DOI: 10.1002/chem.202400987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 05/23/2024]
Abstract
This study explores the synthesis of cyclopenta-fused polyaromatic hydrocarbons (CP-PAHs) via Pt-catalyzed cyclization in water, focusing on the formation of fused pentagonal rings within heavily fused PAH frameworks. Utilizing platinum catalysts at lower temperatures (200-260 °C) in water, led to the successful synthesis of singly cyclized CP-PAHs. The reaction conditions facilitated the mono-cyclization of substrates such as dibenzo[g,p]chrysene and its isomers, yielding the desired products while suppressing the formation of bis-cyclized compounds. The use of Fe2O3 as an additive in conjunction with PtO2 was effective to suppress hydrogenation of the substrates and products. The products exhibited a redshift in UV-visible absorption and photoluminescence bands due to a decrease in the HOMO-LUMO energy gap. These findings highlight the potential of Pt-catalyzed cyclization for the controlled synthesis of CP-PAHs, with implications for various applications in materials science.
Collapse
Affiliation(s)
- Naoto Hamaguchi
- Department of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkaku-bashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Takumi Kubota
- Department of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkaku-bashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Masaaki Yamada
- Department of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkaku-bashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Hikaru Kimura
- Department of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkaku-bashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Hayato Tsuji
- Department of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkaku-bashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| |
Collapse
|
6
|
Misselwitz E, Spengler J, Rominger F, Kivala M. Indenoannulated Tridecacyclene: An All-Carbon Seven-Stage Redox-Amphoter. Chemistry 2024; 30:e202400696. [PMID: 38563636 DOI: 10.1002/chem.202400696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
We disclose an indenoannulated tridecacyclene comprising a central cyclooctatetraene moiety with multiple adjacent pentagonal rings which is accessible in a concise synthetic sequence. The saddle-shaped geometry of the non-benzenoid polycyclic scaffold and its unique packing behavior in the solid state were characterized by X-ray crystallography. In electrochemical studies, the compound undergoes seven reversible redox events comprising five reductions and two oxidations. The dicationic and dianionic species obtained by chemical oxidation and reduction, respectively, were characterized spectroscopically in solution. Density functional theory calculations were applied to provide insights into aromaticity evolution in the respective charged species, highlighting the beneficial effect of the non-benzenoid moieties on charge stabilization.
Collapse
Affiliation(s)
- Erik Misselwitz
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jonas Spengler
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Milan Kivala
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Tan L, Zheng X, Shi J, Qin T, Ji L. 4,9- and 4,10-Substituted pyrenes: synthesis, successful isolation, and optoelectronic properties. Org Biomol Chem 2024; 22:1676-1685. [PMID: 38299623 DOI: 10.1039/d3ob01936e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We report herein a way to prepare and purify optoelectronic functional 4,9- and 4,10-substituted pyrene isomers. By tuning the size of substituents, the designed 4,9- and 4,10-isomers can be successfully isolated by recycling preparative size-exclusion chromatography (SEC) and/or repeated recrystallization. The structure and purity of the isolated compounds 1-5 have been confirmed by 1H NMR, 13C NMR, and HRMS. The photophysical and electrochemical properties of compounds 1-5 have been studied in detail both experimentally and theoretically. The lowest transitions of these pyrenes, 1-5, are allowed, with moderate to high fluorescence quantum yields and radiative decay rates around 108 s-1. The differences between the electrochemical and photophysical properties of 4,9-, 4,10-, 1,6-, and 2,7-substituted isomers are compared and concluded.
Collapse
Affiliation(s)
- Leibo Tan
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, 710027 Xi'an, China
| | - Xiuli Zheng
- Qilu Pharmaceutical Co. Ltd, No. 23999, Gongye Bei Road, Jinan 250100, China
| | - Junqing Shi
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, 710027 Xi'an, China
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu 211816, China.
| | - Lei Ji
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, 710027 Xi'an, China
| |
Collapse
|
8
|
Duan Y, Chen M, Hayashi H, Yamada H, Liu X, Zhang L. Buckybowl and its chiral hybrids featuring eight-membered rings and helicene units. Chem Sci 2023; 14:10420-10428. [PMID: 37800001 PMCID: PMC10548505 DOI: 10.1039/d3sc00658a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 10/07/2023] Open
Abstract
Here we report the synthesis of a novel buckybowl (7) with a high bowl-to-bowl inversion barrier (ΔG‡ = 38 kcal mol-1), which renders the rate of inversion slow enough at room temperature to establish two chiral polycyclic aromatic hydrocarbons (PAHs). By strategic fusion of eight-membered rings to the rim of 7, the chiral hybrids 8 and 9 are synthesized and display helicity and positive and negative curvature, allowing the enantiomers to be configurationally stable and their chiroptical properties are thoroughly examined. Computational and experimental studies reveal the enantiomerization mechanisms for the chiral hybrids and demonstrate that the eight-membered ring strongly affects the conformational stability. Because of its static and doubly curved conformation, 9 shows a high binding affinity towards C60. The OFET performance of 7-9 could be tuned and the hybrids show ambipolar characteristics. Notably, the 9·C60 cocrystal exhibits well-balanced ambipolar performance with electron and hole mobilities of up to 0.19 and 0.11 cm2 V-1 s-1, respectively. This is the first demonstration of a chiral curved PAH and its complex with C60 for organic devices. Our work presents new insight into buckybowl-based design of PAHs with configurational stability and intriguing optoelectronic properties.
Collapse
Affiliation(s)
- Yuxiao Duan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Meng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Hironobu Hayashi
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
9
|
Wu J, Zhang G. Periphery‐Core Strategy to Access a Bowl‐Shaped Molecule Bearing Multiple Heteroatoms. Angew Chem Int Ed Engl 2022; 61:e202208061. [DOI: 10.1002/anie.202208061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jianrong Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products College of Chemical Engineering Nanjing Forestry University Longpan Road 159 Nanjing 210037 P. R. China
| | - Gang Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products College of Chemical Engineering Nanjing Forestry University Longpan Road 159 Nanjing 210037 P. R. China
| |
Collapse
|
10
|
Wu J, Zhang G. Periphery‐Core Strategy to Access a Bowl‐Shaped Molecule Bearing Multiple Heteroatoms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jianrong Wu
- Nanjing Forestry University College of Chemical Engineering CHINA
| | - Gang Zhang
- Nanjing Forestry University College of Chemical Engineering Longpan Road 159 210037 Nanjing CHINA
| |
Collapse
|
11
|
Ueda H, Yoshimoto S. Multi-Redox Active Carbons and Hydrocarbons: Control of their Redox Properties and Potential Applications. CHEM REC 2021; 21:2411-2429. [PMID: 34128316 DOI: 10.1002/tcr.202100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Precise control over redox properties is essential for high-performance organic electronic devices such as organic batteries, electrochromic devices, and information storage devices. In this context, multi-redox active carbons and hydrocarbons, represented as Cx Hy molecules (x≥1, y≥0), are highly sought after, because they can switch between multiple redox states. Herein, we outline the redox properties of Cx Hy molecules as solutes and adsorbed species. Furthermore, the limitations of evaluating their redox properties and the possible solutions are summarized. Additionally, the theoretical capacity (mAh/g) and gravimetric energy density (Wh/kg) of secondary batteries were estimated based on the redox properties of 185 Cx Hy molecules, which have primarily been reported in the last decade. Among them, seven Cx Hy molecules were found to have the potential to surpass the energy density of LiNi0.6 Mn0.2 Co0.2 O2 /graphite batteries. The use of Cx Hy molecules in multielectrochromic devices and multi-bit memory is also explained. We believe that this review will encourage further utilization of Cx Hy molecules thereby promoting its applications in organic electronic devices.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Soichiro Yoshimoto
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
12
|
Akahori S, Sasamori T, Shinokubo H, Miyake Y. Enthalpically and Entropically Favorable Self-Assembly: Synthesis of C 4h -Symmetric Tetraazatetrathia[8]circulenes by Regioselective Introduction of Pyridine Rings. Chemistry 2021; 27:5675-5682. [PMID: 33300177 DOI: 10.1002/chem.202005077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 11/07/2022]
Abstract
Self-assembly of π-conjugated molecules in solution generally occurs owing to either an enthalpic or an entropic gain; however, designing π-conjugated systems that simultaneously exhibit enthalpically and entropically favorable self-assembly behavior is challenging. Herein, the self-assembly behavior of tetraazatetrathia[8]circulenes is disclosed, which is driven by both enthalpy and entropy. Single-crystal X-ray diffraction analysis demonstrated that molecules of these tetraazatetrathia[8]circulenes form face-to-face stacked dimers with a 1D columnar structure owing to the circularly arranged dipole moments. Importantly, concentration- and temperature-dependent 1 H NMR spectra revealed that the formation of self-assemblies of tetraazatetrathia[8]circulenes in chloroform and methanol is favored by both enthalpic and entropic factors. The unique association behavior is due to the presence of sp2 -hybridized nitrogen atoms, which weakly coordinate to the hydrogen atoms of these solvents and reduce the π-electron density of the circulene cores.
Collapse
Affiliation(s)
- Shuhei Akahori
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
| | - Takahiro Sasamori
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 3058571, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
| |
Collapse
|
13
|
Song Y, Zhang G. Effect of Fusion Manner of Concave Molecules on the Properties of Resulting Nanoboats. Org Lett 2021; 23:491-496. [PMID: 33403857 DOI: 10.1021/acs.orglett.0c04008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A boat-shaped compound, which can be viewed as the fusion of two concave molecules with crossed quinacridone and indolocarbazole throughout, was synthesized and characterized. The investigation determined that the fusion manner of two concave molecules has little influence on the molecular curvature and aromaticity when compared with its congener containing crossed indolocarbazole throughout. The situation of carbonyl groups is critical in adjusting the electronic structure and physicochemical properties due to the fixed position of nitrogen atoms.
Collapse
Affiliation(s)
- Yujun Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, P.R. China
| | - Gang Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, P.R. China
| |
Collapse
|
14
|
Zhu G, Song Y, Zhang Q, Ding W, Chen X, Wang Y, Zhang G. Modulating the properties of buckybowls containing multiple heteroatoms. Org Chem Front 2021. [DOI: 10.1039/d0qo01452d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-centered buckybowls with sulfur decoration at the rim were synthesized and characterized. The buckybowls demonstrate tunable properties depending on the state of the sulfur atom.
Collapse
Affiliation(s)
- Guanxing Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Yujun Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Qianyu Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Weiwei Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Xinxin Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Yuannan Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Gang Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| |
Collapse
|
15
|
Elbert SM, Haidisch A, Kirschbaum T, Rominger F, Zschieschang U, Klauk H, Mastalerz M. 2,7,11,16-Tetra-tert-Butyl Tetraindenopyrene Revisited by an "Inverse" Synthetic Approach. Chemistry 2020; 26:10585-10590. [PMID: 32314830 PMCID: PMC7496754 DOI: 10.1002/chem.202001555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Indexed: 11/30/2022]
Abstract
A new synthetic route to tetraindenopyrene (TIP)—a bowl‐shaped cut‐out structure of C70—is reported. The key step in this approach is a fourfold palladium‐catalyzed C−H activation that increases the yield more than 50 times in comparison to the approach originally described by Scott and co‐workers. Besides examination of its optoelectronic properties and study of its aggregation in solution, TIP was also re‐investigated by dispersion‐corrected DFT methods, which showed that dispersion interactions significantly increase the bowl‐to‐bowl inversion barrier. Furthermore, TIP was used as a semiconductor in p‐channel thin‐film transistors (TFTs).
Collapse
Affiliation(s)
- Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Anika Haidisch
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Ute Zschieschang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Hagen Klauk
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|