1
|
Fang C, Wang QP, Xu B, Zhang ZM, Zhang J. Palladium/XuPhos-catalyzed enantioselective cascade Heck/intermolecular C(sp 2)-H alkylation reaction. Chem Sci 2024; 15:5573-5580. [PMID: 38638207 PMCID: PMC11023025 DOI: 10.1039/d4sc00262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Palladium-catalyzed enantioselective domino Heck/intramolecular C-H functionalization reaction, as a valuable strategy for creating molecular diversity, has remained a prominent challenge. Here, we describe a Pd/XuPhos catalyst for asymmetric domino Heck/intermolecular C-H alkylation of unactivated alkenes with diverse polyfluoro- and heteroarenes in a highly chemo- and enantioselective manner. This process enables efficient synthesis of various dihydrobenzofurans, indolines and indanes, which are of interest in pharmaceutical research and other areas. Late-stage modifications of the core structures of natural products are also well showcased. Moreover, synthetic transformations create a valuable platform for preparing a series of functionalized molecules. Several control experiments for mechanistic study are conducted to pursue a further understanding of the reaction.
Collapse
Affiliation(s)
- Chao Fang
- Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Quan-Pu Wang
- Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University Shanghai 200438 P. R. China
- Zhuhai Fudan Innovation Institute Zhuhai Guangdong 519000 P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University Shanghai 200438 P. R. China
- Fudan Zhangjiang Institute Shanghai 201203 P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University Shanghai 200438 P. R. China
- Zhuhai Fudan Innovation Institute Zhuhai Guangdong 519000 P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
2
|
Li MY, Wei D, Feng CG, Lin GQ. Tandem Reactions involving 1,4-Palladium Migrations. Chem Asian J 2022; 17:e202200456. [PMID: 35661425 DOI: 10.1002/asia.202200456] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Indexed: 11/08/2022]
Abstract
Transition-metal-catalyzed tandem reactions have become a mainstay in organic chemistry owing to their high atom- and step-economies. Metal-migration-based tandem reactions allow the engagement of simple starting materials for incorporating functional groups into certain positions and constructing complex scaffolds, which provide novel means that are complementary to traditional cross-coupling or C-H activation processes. In light of the broad utility of the 1,4-Pd migration reaction, this paper reviews its progress in the past two decades, summarizing the tandem process and classifying it based on insertion, elimination, transmetalation, and C-H bond activation. Special emphasis is placed on the driving force of Pd migration and different migration mechanisms. Moreover, this review also attempts to summarize common strategies for improving the regio- and site-selectivities of the migration process.
Collapse
Affiliation(s)
- Meng-Yao Li
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Dong Wei
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, P. R. China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 1665 Kongjiang Road, Shanghai, 200092, P. R. China
| | - Chen-Guo Feng
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, P. R. China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, P. R. China
| |
Collapse
|
3
|
Zhang G, Feng XJ, Li MY, Ji XM, Lin GQ, Feng CG. Synthesis of tetrasubstituted allenes via a 1,4-palladium migration/carbene insertion/β-H elimination sequence. Org Biomol Chem 2022; 20:5383-5386. [PMID: 35748786 DOI: 10.1039/d2ob00751g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A palladium-catalyzed synthesis of tetrasubstituted allenes from aryl bromides and aryl diazoacetates is developed. This transformation proceeded via an aryl to alkenyl 1,4-palladium migration/carbene insertion/β-H elimination sequence under mild reaction conditions.
Collapse
Affiliation(s)
- Ge Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao-Jiao Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Meng-Yao Li
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ming Ji
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
4
|
Chen YZ, Fu JG, Ji XM, Zhang SS, Feng CG. Palladium-catalyzed cross-coupling of unreactive C(sp 3)-H bonds with azole C(sp 2)-H bonds by using bromide as a traceless directing group. Chem Commun (Camb) 2022; 58:6661-6664. [PMID: 35593262 DOI: 10.1039/d2cc01944b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A palladium-catalyzed intermolecular cross-coupling of unreactive C(sp3)-H bonds and azole C(sp2)-H bonds with bromide as a traceless directing group is described. The judicious selection of the bulky and electron-rich phosphine ligand is the key for the success of this cascade process. The protocol features a broad substrate scope, excellent regioselectivity, and good functional group tolerance.
Collapse
Affiliation(s)
- Yan-Zhen Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
| | - Jian-Guo Fu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
| | - Xiao-Ming Ji
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
| | - Shu-Sheng Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
| |
Collapse
|
5
|
Cheng C, Zhu Q, Zhang Y. Intermolecular C-H silylation through cascade carbopalladation and vinylic to aryl 1,4-palladium migration. Chem Commun (Camb) 2021; 57:9700-9703. [PMID: 34555133 DOI: 10.1039/d1cc03677g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A palladium-catalyzed remote C-H silylation reaction has been developed through vinylic to aryl 1,4-palladium migration. By using alkyne-tethered aryl iodides as the starting materials and hexamethyldisilane as the silylating reagent, the reaction involves cascade intramolecular carbopalladation, 1,4-palladium migration, and silylation with hexamethyldisilane, and leads to the formation of exocyclic alkene-containing 5-silylisoquinolines as the final products.
Collapse
Affiliation(s)
- Cang Cheng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Qiongqiong Zhu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
6
|
Wu XX, Ye H, Jiang G, Hu L. Domino Heck/Hiyama cross-coupling: trapping of the σ-alkylpalladium intermediate with arylsilanes. Org Biomol Chem 2021; 19:4254-4257. [PMID: 33890598 DOI: 10.1039/d1ob00595b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A palladium-catalyzed domino Heck cyclization/Hiyama coupling reaction by the trapping of the σ-alkylpalladium intermediate with arylsilanes is described. A wide range of aryl-tethered alkenes and arylsilanes are all compatible with the reaction conditions. This approach shows good yields and excellent functional group tolerance, presenting a more practical and sustainable alternative to the conventional domino Heck cyclization/Suzuki coupling reaction.
Collapse
Affiliation(s)
- Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China.
| | | | | | | |
Collapse
|
7
|
Ishu K, Kumar D, Maurya NK, Yadav S, Chaudhary D, Kuram MR. Dicarbofunctionalization of unactivated alkenes by palladium-catalyzed domino Heck/intermolecular direct hetero arylation with heteroarenes. Org Biomol Chem 2021; 19:2243-2253. [PMID: 33600545 DOI: 10.1039/d1ob00195g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A palladium-catalyzed domino Heck/intermolecular direct hetero arylation sequence of unactivated alkenes was developed, providing 1,2,3-triazole containing bisheterocycles bearing all-carbon quaternary centers with yields of 25-90%. The protocol was extended to 1,3,4-oxadiazoles as well. The installed triazole was further exploited for late-stage functionalizations, and the mechanistic studies indicate the involvement of C-H activation.
Collapse
Affiliation(s)
- Km Ishu
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Dharmendra Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India and Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector-19, Kamla Nehru Nagar, Ghaziabad, 201002, India.
| | - Naveen Kumar Maurya
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India and Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector-19, Kamla Nehru Nagar, Ghaziabad, 201002, India.
| | - Suman Yadav
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Dhananjay Chaudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India and Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector-19, Kamla Nehru Nagar, Ghaziabad, 201002, India.
| |
Collapse
|