1
|
Boumali R, David E, Chaaya N, Lucas M, Aït Amiri S, Lefort V, Nina-Diogo A, Salmain M, Petropoulos I, Corcé V, El Amri C, Botuha C. Deferasirox Derivatives as Inhibitors of Kallikrein-Related Peptidases Associated to Neurodegenerative Diseases. ChemMedChem 2025:e2500187. [PMID: 40192482 DOI: 10.1002/cmdc.202500187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Indexed: 04/26/2025]
Abstract
Kallikrein-related peptidases are a family of serine proteases whose loss of activity regulation has been particularly linked to neurodegenerative diseases. Moreover, iron overload is also a key process in some of these leading pathological conditions, particularly Alzheimer's disease. It is identified for the first time Deferasirox, a well-known FDA-approved iron chelator (DFX) as an initial hit for kallikrein's (KLK) inhibition and proposed here the design and synthesis of a small library of molecules using DFX as chemical scaffold. Resulting subseries of compounds are evaluated against lead central nervous system KLK's, namely, KLK1, KLK6, and KLK8 using targeted pharmacomodulations on DFX. Beyond DFX, several reversible micromolar inhibitors of these KLKs have been identified as hits and are shown to be devoid of any noticeable cytotoxicity toward neural cell lines commonly used in the field of neurodegenerative diseases. Their ability to chelate iron is also assessed in comparison to DFX and preformed iron-compound complexes displayed slightly improved inhibition potency for some derivatives with a KLK-dependent manner. Hence, several DFX derivatives are identified as promising starting points for the development of dual therapeutic agents in the context of neurodegenerative diseases where both deregulated KLK's proteolysis and iron dysregulation are involved.
Collapse
Affiliation(s)
- Rilès Boumali
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, F-75252, France
| | - Elodie David
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, F-75252, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris, F-75252, France
| | - Nancy Chaaya
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, F-75252, France
| | - Morane Lucas
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris, F-75252, France
| | - Sabrina Aït Amiri
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, F-75252, France
| | - Valérie Lefort
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, F-75252, France
| | - Anthony Nina-Diogo
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris, F-75252, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris, F-75252, France
| | - Isabelle Petropoulos
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, F-75252, France
| | - Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris, F-75252, France
| | - Chahrazade El Amri
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, F-75252, France
| | - Candice Botuha
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris, F-75252, France
| |
Collapse
|
2
|
Remadna E, Wilsmann A, Stadler N, Forté J, Hoyeau N, Ott I, Noël J, Caron B, Thorimbert S, Forgez P, Bertrand B. Synthesis and Biological Evaluation of a New Biphenyl-Based Organogold(III) Complex with In Vitro and In Vivo Anticancer Activity. J Med Chem 2025; 68:1755-1771. [PMID: 39792795 DOI: 10.1021/acs.jmedchem.4c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Despite recent advances in cancer treatment, there is still a need for novel compounds with antineoplastic activity. Among 11 biphenyl-based organogold(III) N-heterocyclic carbene (NHC) (BGC) complexes of general formula [(C^C)Au(NHC-pyr)X], where (C^C) = 4,4'-ditertbutylbiphenyl, X = Cl or phenylacetylide, and (NHC-pyr) is a pyridyl-substituted NHC ligand, the complex BGC4 bearing a 4-CF3-pyridyl substituent and a chloride ligand showed promising antineoplastic activity on the triple negative breast cancer cell line. BGC4 was able to induce cell apoptosis but had no effect on the cell cycle. In vivo, BGC4 reduced the tumor growth rate by increasing the necrosis area and decreasing the mitotic activity. Repeated injections of BGC4 did not induce common side effects. The present investigation shows that BGC4 is a promising antineoplastic candidate. Its potential as a future chemotherapy for the treatment of cancer will be strengthened by evaluating its efficacy in combined treatment with current chemotherapy.
Collapse
Affiliation(s)
- Edwyn Remadna
- Sorbonne Université, CNRS Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
- Université Paris Cité, INSERM, Health & Functional Exposomics - HealthFex, U1124, Saint Germain des Prés Campus, 75006, Paris, France
| | - Anna Wilsmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Nicolas Stadler
- Université Paris Cité, INSERM, Health & Functional Exposomics - HealthFex, U1124, Saint Germain des Prés Campus, 75006, Paris, France
| | - Jérémy Forté
- Sorbonne Université, CNRS Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Nadia Hoyeau
- Department of Pathology, Saint-Antoine Hospital, AP-HP, Sorbonne Université, 75012 Paris, France
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Julie Noël
- Sorbonne Université, OSU Ecce Terra, F-75005 Paris, France
| | - Benoît Caron
- Institut des Sciences de la Terre de Paris (ISTeP), Sorbonne Université, CNRS-INSU, F-75005 Paris, France
| | - Serge Thorimbert
- Sorbonne Université, CNRS Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Patricia Forgez
- Université Paris Cité, INSERM, Health & Functional Exposomics - HealthFex, U1124, Saint Germain des Prés Campus, 75006, Paris, France
| | - Benoît Bertrand
- Sorbonne Université, CNRS Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| |
Collapse
|
3
|
Giuso V, Yang J, Forté J, Dossmann H, Daniel C, Gourlaouen C, Mauro M, Bertrand B. Binuclear Biphenyl Organogold(III) Complexes: Synthesis, Photophysical and Theoretical Investigation, and Anticancer Activity. Chempluschem 2023; 88:e202300303. [PMID: 37610058 DOI: 10.1002/cplu.202300303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
A series of four binuclear complexes of general formula [(C^C)Au(Cl)(L^L)(Cl)Au(C^C)], where C^C is 4,4'-diterbutylbiphenyl and L^L is either a bridging diphosphine or 4,4'-bipyridine, are synthetized with 52 to 72 % yield and structurally characterized by X-ray diffraction. The use of the chelating 1,2-diphenylphosphinoethane ligand in a 1 : 2 (P^P):Au stoichiometry leads to the near quantitative formation of a gold double-complex salt of general formula [(C^C)Au(P^P)][(C^C^)AuCl2 ]. The compounds display long-lived yellow-green phosphorescence with λem in the range of 525 to 585 nm in the solid state with photoluminescence quantum yields (PLQY) up to 10 %. These AuIII complexes are tested for their antiproliferative activity against lung adenocarcinoma cells A549 and results show that compounds 2 and 5 are the most promising candidates. The digold salt 5 shows anticancer activity between 66 and 200 nM on the tested cancer cell lines, whereas derivative 2 displays concentration values required to reduce by 50 % the cell viability (IC50 ) between 7 and 11 μM. Reactivity studies of compound 5 reveal that the [(C^C)Au(P^P)]+ cation is stable in the presence of relevant biomolecules including glutathione suggesting a structural mechanism of action.
Collapse
Affiliation(s)
- Valerio Giuso
- Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg, France
| | - Jeannine Yang
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Jérémy Forté
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Héloïse Dossmann
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Chantal Daniel
- Institut de Chimie de Strasbourg, UMR 7177, Laboratoire de Chimie Quantique, Université de Strasbourg & CNRS, 4 rue Blaise Pascal, 67081, Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie de Strasbourg, UMR 7177, Laboratoire de Chimie Quantique, Université de Strasbourg & CNRS, 4 rue Blaise Pascal, 67081, Strasbourg, France
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg, France
| | - Benoît Bertrand
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
4
|
Mishra S, Tripathy SK, Paul D, Laha P, Santra MK, Patra S. Asymmetrically Coordinated Heterodimetallic Ir-Ru System: Synthesis, Computational, and Anticancer Aspects. Inorg Chem 2023; 62:7003-7013. [PMID: 37097171 DOI: 10.1021/acs.inorgchem.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein, we present an unprecedented formation of a heterodinuclear complex [{(ppy)2IrIII}(μ-phpy){RuII(tpy)}](ClO4)2 {[1](ClO4)2} using terpyridyl/phenylpyridine as ancillary ligands and asymmetric phpy as a bridging ligand. The asymmetric binding mode (N∧N-∩-N∧N∧C-) of the phpy ligand in {[1](ClO4)2} is confirmed by 1H, 13C, 1H-1H correlated spectroscopy (COSY), high-resolution mass spectrum (HRMS), single-crystal X-ray crystallography techniques, and solution conductivity measurements. Theoretical investigation suggests that the highest occupied molecular orbital (HOMO) and the least unoccupied molecular orbital (LUMO) of [1]2+ are located on iridium/ppy and phpy, respectively. The complex displays a broad low energy charge transfer (CT) band within 450-575 nm. The time-dependent density functional theory (TDDFT) analysis suggests this as a mixture of metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT), where both ruthenium, iridium, and ligands are involved. Complex {[1](ClO4)2} exhibits RuIIIrIII/RuIIIIrIII- and RuIIIIrIII/RuIIIIrIV-based oxidative couples at 0.83 and 1.39 V, respectively. The complex shows anticancer activity and selectivity toward human breast cancer cells (IC50; MCF-7: 9.3 ± 1.2 μM, and MDA-MB-231: 8.6 ± 1.2 μM) over normal breast cells (MCF 10A: IC50 ≈ 21 ± 1.3 μM). The Western blot analysis and fluorescence microscopy images suggest that combined apoptosis and autophagy are responsible for cancer cell death.
Collapse
Affiliation(s)
- Saumyaranjan Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Suman Kumar Tripathy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Debasish Paul
- National Centre for Cell Science, NCCS Complex, Pune University Campus Ganeshkhind, Pune 411007, Maharashtra, India
| | - Paltan Laha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Manas Kumar Santra
- National Centre for Cell Science, NCCS Complex, Pune University Campus Ganeshkhind, Pune 411007, Maharashtra, India
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| |
Collapse
|
5
|
Mamta P, Chaudhary A. Synthesis, Spectroscopic elucidation, In vitro Antimicrobial, Cytotoxic and CT-DNA binding Evaluation of Heterobimetallic Complexes of Ni(II) with Main Group/Transition Metal dichlorides. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Highlights of New Strategies to Increase the Efficacy of Transition Metal Complexes for Cancer Treatments. Molecules 2022; 28:molecules28010273. [PMID: 36615466 PMCID: PMC9822110 DOI: 10.3390/molecules28010273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Although important progress has been made, cancer still remains a complex disease to treat. Serious side effects, the insurgence of resistance and poor selectivity are some of the problems associated with the classical metal-based anti-cancer therapies currently in clinical use. New treatment approaches are still needed to increase cancer patient survival without cancer recurrence. Herein, we reviewed two promising-at least in our opinion-new strategies to increase the efficacy of transition metal-based complexes. First, we considered the possibility of assembling two biologically active fragments containing different metal centres into the same molecule, thus obtaining a heterobimetallic complex. A critical comparison with the monometallic counterparts was done. The reviewed literature has been divided into two groups: the case of platinum; the case of gold. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed. Particularly, we highlighted some interesting examples of compounds targeting cancer cell organelles according to a third-order targeting approach, and complexes targeting the whole cancer cell, according to a second-order targeting strategy.
Collapse
|
7
|
Heterodimetallic Iridium-Rhenium System: Synthesis, Computational and Photocatalytic Aspects. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Schindler K, Zobi F. Anticancer and Antibiotic Rhenium Tri- and Dicarbonyl Complexes: Current Research and Future Perspectives. Molecules 2022; 27:539. [PMID: 35056856 PMCID: PMC8777860 DOI: 10.3390/molecules27020539] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Organometallic compounds are increasingly recognized as promising anticancer and antibiotic drug candidates. Among the transition metal ions investigated for these purposes, rhenium occupies a special role. Its tri- and dicarbonyl complexes, in particular, attract continuous attention due to their relative ease of preparation, stability and unique photophysical and luminescent properties that allow the combination of diagnostic and therapeutic purposes, thereby permitting, e.g., molecules to be tracked within cells. In this review, we discuss the anticancer and antibiotic properties of rhenium tri- and dicarbonyl complexes described in the last seven years, mainly in terms of their structural variations and in vitro efficacy. Given the abundant literature available, the focus is initially directed on tricarbonyl complexes of rhenium. Dicarbonyl species of the metal ion, which are slowly gaining momentum, are discussed in the second part in terms of future perspective for the possible developments in the field.
Collapse
Affiliation(s)
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| |
Collapse
|
9
|
Sharma S. A, N. V, Kar B, Das U, Paira P. Target-specific mononuclear and binuclear rhenium( i) tricarbonyl complexes as upcoming anticancer drugs. RSC Adv 2022; 12:20264-20295. [PMID: 35919594 PMCID: PMC9281374 DOI: 10.1039/d2ra03434d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Metal complexes have gradually been attracting interest from researchers worldwide as potential cancer therapeutics. Driven by the many side effects of the popular platinum-based anticancer drug cisplatin, the tireless endeavours of researchers have afforded strategies for the design of appropriate metal complexes with minimal side effects compared to cisplatin and its congeners to limit the unrestricted propagation of cancer. In this regard, transition metal complexes, especially rhenium-based complexes are being identified and highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body. This is attributed the amazing photophysical properties of rhenium complexes together with their ability to selectively attack different organelles in cancer cells. Therefore, this review presents the properties of different rhenium-based complexes to highlight their recent advances as anticancer agents based on their cytotoxicity results. In this review, rhenium-based complexes are highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body.![]()
Collapse
Affiliation(s)
- Ajay Sharma S.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Vaibhavi N.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
10
|
Karges J, Seo H, Cohen SM. Synthesis of tetranuclear rhenium(I) tricarbonyl metallacycles. Dalton Trans 2021; 50:16147-16155. [PMID: 34679156 DOI: 10.1039/d1dt02435c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Re(I) tricarbonyl complexes have received much attention due to their attractive photochemical, electrochemical, and biological properties. Beyond simple mononuclear complexes, multinuclear assemblies offer greater structural diversity and properties. Despite previous reports on the preparation of di-, tri-, or tetranuclear Re(I) tricarbonyl assemblies, the synthesis of these supramolecular structures remains challenging due to overall low yields or tedious purification protocols. Herein, the facile preparation and characterization of tetranuclear Re(I) tricarbonyl metallacycles with a square geometry is reported using a tetrazole-based ligand. The synthesis of the metallacycle was optimized using different metal precursors, solvents, temperatures, and reagent concentrations. Finally, the scope of suitable tetrazole-based ligands was explored to produce several tetranuclear Re(I) tricarbonyl-based metallacycles.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Hyeonglim Seo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Khodjoyan S, Remadna E, Dossmann H, Lesage D, Gontard G, Forté J, Hoffmeister H, Basu U, Ott I, Spence P, Waller ZAE, Salmain M, Bertrand B. [(C C)Au(N N)] + Complexes as a New Family of Anticancer Candidates: Synthesis, Characterization and Exploration of the Antiproliferative Properties. Chemistry 2021; 27:15773-15785. [PMID: 34436799 DOI: 10.1002/chem.202102751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/31/2022]
Abstract
A library of eleven cationic gold(III) complexes of the general formula [(C C)Au(N N)]+ when C C is either biphenyl or 4,4'-ditertbutyldiphenyl and N N is a bipyridine, phenanthroline or dipyridylamine derivative have been synthesized and characterized. Contrasting effects on the viability of the triple negative breast cancer cells MDA-MB-231 was observed from a preliminary screening. The antiproliferative activity of the seven most active complexes were further assayed on a larger panel of human cancer cells as well as on non-cancerous cells for comparison. Two complexes stood out for being either highly active or highly selective. Eventually, reactivity studies with biologically meaningful amino acids, glutathione, higher order DNA structures and thioredoxin reductase (TrxR) revealed a markedly different behavior from that of the well-known coordinatively isomeric [(C N C)Au(NHC)]+ structure. This makes the [(C C)Au(N N)]+ complexes a new class of organogold compounds with an original mode of action.
Collapse
Affiliation(s)
- Silva Khodjoyan
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Edwyn Remadna
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Héloïse Dossmann
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Denis Lesage
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Geoffrey Gontard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Jérémy Forté
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Henrik Hoffmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Uttara Basu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Philip Spence
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK.,UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1 N, UK
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Benoît Bertrand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| |
Collapse
|
12
|
Huang Z, King AP, Lovett J, Lai B, Woods JJ, Harris HH, Wilson JJ. Photochemistry and in vitro anticancer activity of Pt(IV)Re(I) conjugates. Chem Commun (Camb) 2021; 57:11189-11192. [PMID: 34622255 DOI: 10.1039/d1cc04669a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The photophysical and photochemical properties of two Pt(IV)Re(I) conjugates were studied via both experimental and computational methods. Both conjugates exhibit modest photocytotoxicity against ovarian cancer cells. X-ray fluorescence microscopy showed that Pt and Re colocalize in cells whether they had been irradiated or not. This work demonstrates the potential of photoactivated multilimetallic agents for combating cancer.
Collapse
Affiliation(s)
- Zhouyang Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - James Lovett
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA. .,Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Huang Z, Wilson JJ. Therapeutic and Diagnostic Applications of Multimetallic Rhenium(I) Tricarbonyl Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhouyang Huang
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
14
|
Melounková L, Syková M, Jirásko R, Jambor R, Havelek R, Peterová E, Honzíček J, Vinklárek J. Heterobimetallic platinum( ii) complexes with increased cytotoxicity against ovarian cancer cell lines. NEW J CHEM 2021. [DOI: 10.1039/d1nj03533a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two series of heterobimetallic compounds were prepared from the starting complex [cis-L2PtCl2] containing an aminophosphine ligand (L = 2,6-iPr2-C6H3-NHPPh2).
Collapse
Affiliation(s)
- Lucie Melounková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01 Hradec Králové, Czech Republic
| | - Miriam Syková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01 Hradec Králové, Czech Republic
| | - Eva Peterová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01 Hradec Králové, Czech Republic
| | - Jan Honzíček
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Jaromír Vinklárek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| |
Collapse
|