1
|
Symes DLG, Masuda JD. Recent advances in heavier group 15 (P, As, Sb, Bi) radical chemistry - frameworks, small molecule reactivity, and catalysis. Dalton Trans 2025; 54:5234-5249. [PMID: 40028835 DOI: 10.1039/d4dt03582h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Main group radical chemistry has been a targeted research area for several decades. With growing examples of phosphorus radicals, even heavier pnictogen radicals including arsenic, antimony, and bismuth have also become important targets. A diverse framework of group 15 radicals has been reported in the 21st century and is covered herein. Reactivity and applications of selected radicals and future directions for this field are discussed.
Collapse
Affiliation(s)
- Deana L G Symes
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada.
| | - Jason D Masuda
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada.
| |
Collapse
|
2
|
Haldar H, Das S, Wiedemann HTA, Beuthert K, Kay CWM, Dehnen S, Yildiz CB, Majumdar M. Tetra-Cationic Distibane Stabilized by Bis(α-iminopyridine) and Its Reactivity. J Am Chem Soc 2025; 147:3140-3151. [PMID: 39818741 DOI: 10.1021/jacs.4c12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The work establishes the salt of a tetra-cationic distibane, [L2Sb2][CF3SO3]4 = [1]2[OTf]4 (CF3SO3 = OTf), stabilized by a bis(α-iminopyridine) ligand L, defying the Coulombic repulsion. The synthetic approach involved a dehydrocoupling reaction when a mixture of L and Sb(OTf)3 in a 1:1 ratio was treated with Et3SiH/LiBEt3H as the hydride source. Compound [1]2[OTf]4 was also achieved from [LSbCl][OTf]2 as a precursor and using Et3SiH. Dissolution of [1]2[OTf]4 in polar solvents unveiled the formation of the persistent L-stabilized dicationic Sb(II) radical monomer [1][OTf]2, while the addition of Me3SiOTf regenerated the dimer in the salt [1]2[OTf]4. The homolytic cleavage of the Sb-Sb bond in [1]24+ has manifested in exchange reactions between [1]2[OTf]4 and Ph2Ch2 (Ch = S, Se), giving [LSb(SPh)][OTf]2 = [2][OTf]2 and [LSb(SePh)][OTf]2 = [3][OTf]2, respectively, in acetonitrile. Reaction between [1]2[OTf]4 and p-benzoquinone gave [L2Sb2(C6H4O2)][OTf]4 = [4][OTf]4. An interesting oxygen atom insertion reaction occurred when [1]2[OTf]4 was treated with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) to give [L2Sb2O][ OTf]4 = [5][OTf]4. The oxo-bridged compound [5][OTf]4 was also obtained from exposure of [1]2[OTf]4 in open air. The strong Mn-Mn bond in [Mn2(CO)10] could be cleaved by reacting with [1]2[OTf]4 in the presence of pyridine to form [LSbMn(CO)5][ OTf]2 = [6][OTf]2. On the other hand, the reaction between [Co2(CO)8] and [1]2[OTf]4 gave the oxidative addition product [L2Sb2Co(CO)3][OTf]3 = [7][OTf]3. The compounds were characterized both in the solid and solution states. Computational studies gave a comprehensive understanding of the experimental findings.
Collapse
Affiliation(s)
- Hritwik Haldar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Satyabrata Das
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | | | - Katrin Beuthert
- Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher W M Kay
- Saarland University, Saarbrücken Campus, 66123 Saarbrücken, Germany
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - Stefanie Dehnen
- Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Cem B Yildiz
- Bartin University, Faculty of Science, Department of Biotechnology, 74100 Bartin, Turkey
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
3
|
Zhang Z, Ma Q, Yang X, Zhang S, Guo K, Zhao L. A computational mechanistic study on the formation of aryl sulfonyl fluorides via Bi(III) redox-neutral catalysis and further rational design. J Comput Chem 2024; 45:2979-2990. [PMID: 39240057 DOI: 10.1002/jcc.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Sulfonyl fluorides hold significant importance as highly valued intermediates in chemical biology due to their optimal balance of biocompatibility with both aqueous stability and protein reactivity. The Cornella group introduced a one-pot strategy for synthesizing aryl sulfonyl fluorides via Bi(III) redox-neutral catalysis, which facilitates the transmetallation and direct insertion of SO2 into the BiC(sp2) bond giving the aryl sulfonyl fluorides. We report herein a comprehensive computational investigation of the redox-neutral Bi(III) catalytic mechanism, disclose the critical role of the Bi(III) catalyst and base (i.e., K3PO4), and uncover the origin of SO2 insertion into the Bi(III)C(sp2) bond. The entire catalysis can be characterized via three stages: (i) transmetallation generating the Bi(III)-phenyl intermediate IM3 facilitated by K3PO4. (ii) SO2 insertion into IM3 leading to the formation of Bi(III)-OSOAr intermediate IM5. (iii) IM5 undergoes S(IV)-oxidation yielding the aryl sulfonyl fluoride product 4 and liberating the Bi(III) catalyst for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible. Moreover, we explored other some small molecules (NO2, CO2, H2O, N2O, etc.) insertion reactions mediated by the Bi(III)-complex, and found that NO2 insertions could be easily achieved due to the low insertion barriers (i.e., 17.5 kcal/mol). Based on the detailed mechanistic study, we further rationally designed additional Bi(III) and Sb(III) catalysts, and found that some of which exhibit promising potential for experimental realization due to their low barriers (<16.4 kcal/mol). In this regard, our study contributes significantly to enhancing current Bi(III)-catalytic systems and paving the way for novel Bi(III)-catalyzed aryl sulfonyl fluoride formation reactions.
Collapse
Affiliation(s)
- Zhaoyin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Qin Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Xing Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Shuqi Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lili Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
Schwarzmann J, Eskelinen T, Reith S, Ramler J, Karttunen AJ, Poater J, Lichtenberg C. Bismuth as a Z-Type Ligand: an Unsupported Pt-Bi Donor-Acceptor Interaction and its Umpolung by Reaction with H 2. Angew Chem Int Ed Engl 2024; 63:e202410291. [PMID: 38990168 DOI: 10.1002/anie.202410291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Establishing unprecedented types of bonding interactions is one of the fundamental challenges in synthetic chemistry, paving the way to new (electronic) structures, physicochemical properties, and reactivity. In this context, unsupported element-element interactions are particularly noteworthy since they offer pristine scientific information about the newly identified structural motif. Here we report the synthesis, isolation, and full characterization of the heterobimetallic Bi/Pt compound [Pt(PCy3)2(BiMe2)(SbF6)] (1), bearing the first unsupported transition metal→bismuth donor/acceptor interaction as its key structural motif. 1 is surprisingly robust, its electronic spectra are interpreted in a fully relativistic approach, and it reveals an unprecedented reactivity towards H2.
Collapse
Affiliation(s)
- Johannes Schwarzmann
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, D-35032, Marburg, Germany
| | - Toni Eskelinen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
| | - Sascha Reith
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, D-35032, Marburg, Germany
| | - Jacqueline Ramler
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, D-35032, Marburg, Germany
| | - Antti J Karttunen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Crispin Lichtenberg
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, D-35032, Marburg, Germany
| |
Collapse
|
5
|
Rottschäfer D, Reith S, Schwarzmann J, Tambornino F, Lichtenberg C. Cyclic Hydrocarbon Frameworks Containing Two Bismuth Atoms: Towards 9,10-Dibismaanthracene. Chemistry 2024; 30:e202303363. [PMID: 38116821 DOI: 10.1002/chem.202303363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
When bismuth atoms are incorporated into cyclic organic systems, this commonly goes along with strained or distorted molecular geometries, which can be exploited to modulate the physical and chemical properties of these compounds. In six-membered heterocycles, bismuth atoms are often accompanied by oxygen, sulfur or nitrogen as a second hetero-element. In this work, we present the first examples of six-membered rings, in which two CH units are replaced by BiX moieties (X=Cl, Br, I), resulting in dihydro-anthracene analogs. Their behavior in chemically reversible reduction reactions is explored, aiming at the generation of dibisma-anthracene (bismanthrene). Heterometallic compounds (Bi/Fe, Bi/Mn) are introduced as potential bismanthrene surrogates, as supported by bismanthrene-transfer to selenium. Analytical techniques used to investigate the reported compounds include NMR spectroscopy, high-resolution mass spectrometry, single-crystal X-ray diffraction analyses, and DFT calculations.
Collapse
Affiliation(s)
- Dennis Rottschäfer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Sascha Reith
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Johannes Schwarzmann
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Frank Tambornino
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Crispin Lichtenberg
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| |
Collapse
|
6
|
Mato M, Cornella J. Bismuth in Radical Chemistry and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315046. [PMID: 37988225 DOI: 10.1002/anie.202315046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Whereas indications of radical reactivity in bismuth compounds can be traced back to the 19th century, the preparation and characterization of both transient and persistent bismuth-radical species has only been established in recent decades. These advancements led to the emergence of the field of bismuth radical chemistry, mirroring the progress seen for other main-group elements. The seminal and fundamental studies in this area have ultimately paved the way for the development of catalytic methodologies involving bismuth-radical intermediates, a promising approach that remains largely untapped in the broad landscape of synthetic organic chemistry. In this review, we delve into the milestones that eventually led to the present state-of-the-art in the field of radical bismuth chemistry. Our focus aims at outlining the intrinsic discoveries in fundamental inorganic/organometallic chemistry and contextualizing their practical applications in organic synthesis and catalysis.
Collapse
Affiliation(s)
- Mauro Mato
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Tsuruta T, Spinnato D, Moon HW, Leutzsch M, Cornella J. Bi-Catalyzed Trifluoromethylation of C(sp 2)-H Bonds under Light. J Am Chem Soc 2023; 145:25538-25544. [PMID: 37963280 PMCID: PMC10690797 DOI: 10.1021/jacs.3c10333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
We disclose a Bi-catalyzed C-H trifluoromethylation of (hetero)arenes using CF3SO2Cl under light irradiation. The catalytic method permits the direct functionalization of various heterocycles bearing distinct functional groups. The structural and computational studies suggest that the process occurs through an open-shell redox manifold at bismuth, comprising three unusual elementary steps for a main group element. The catalytic cycle starts with rapid oxidative addition of CF3SO2Cl to a low-valent Bi(I) catalyst, followed by a light-induced homolysis of Bi(III)-O bond to generate a trifluoromethyl radical upon extrusion of SO2, and is closed with a hydrogen-atom transfer to a Bi(II) radical intermediate.
Collapse
Affiliation(s)
- Takuya Tsuruta
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Davide Spinnato
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Hye Won Moon
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| |
Collapse
|
8
|
Oberdorf K, Hanft A, Xie X, Bickelhaupt FM, Poater J, Lichtenberg C. Insertion of CO 2 and CS 2 into Bi-N bonds enables catalyzed CH-activation and light-induced bismuthinidene transfer. Chem Sci 2023; 14:5214-5219. [PMID: 37206406 PMCID: PMC10189873 DOI: 10.1039/d3sc01635h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
The uptake and release of small molecules continue to be challenging tasks of utmost importance in synthetic chemistry. The combination of such small molecule activation with subsequent transformations to generate unusual reactivity patterns opens up new prospects for this field of research. Here, we report the reaction of CO2 and CS2 with cationic bismuth(iii) amides. CO2-uptake gives isolable, but metastable compounds, which upon release of CO2 undergo CH activation. These transformations could be transferred to the catalytic regime, which formally corresponds to a CO2-catalyzed CH activation. The CS2-insertion products are thermally stable, but undergo a highly selective reductive elimination under photochemical conditions to give benzothiazolethiones. The low-valent inorganic product of this reaction, Bi(i)OTf, could be trapped, showcasing the first example of light-induced bismuthinidene transfer.
Collapse
Affiliation(s)
- Kai Oberdorf
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Str. 4 35043 Marburg Germany
| | - Anna Hanft
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Str. 4 35043 Marburg Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Str. 4 35043 Marburg Germany
| | - F Matthias Bickelhaupt
- Theoretical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam The Netherlands
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Department of Chemical Sciences, University of Johannesburg Auckland Park Johannesburg 2006 South Africa
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica, IQTCUB, Universitat de Barcelona, ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Crispin Lichtenberg
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Str. 4 35043 Marburg Germany
| |
Collapse
|
9
|
Yang X, Reijerse EJ, Nöthling N, SantaLucia DJ, Leutzsch M, Schnegg A, Cornella J. Synthesis, Isolation, and Characterization of Two Cationic Organobismuth(II) Pincer Complexes Relevant in Radical Redox Chemistry. J Am Chem Soc 2023; 145:5618-5623. [PMID: 36854169 PMCID: PMC10021010 DOI: 10.1021/jacs.2c12564] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 03/02/2023]
Abstract
Herein, we report the synthesis, isolation, and characterization of two cationic organobismuth(II) compounds bearing N,C,N pincer frameworks, which model crucial intermediates in bismuth radical processes. X-ray crystallography uncovered a monomeric Bi(II) structure, while SQUID magnetometry in combination with NMR and EPR spectroscopy provides evidence for a paramagnetic S = 1/2 state. High-resolution multifrequency EPR at the X-, Q-, and W-band enable the precise assignment of the full g- and 209Bi A-tensors. Experimental data and DFT calculations reveal both complexes are metal-centered radicals with little delocalization onto the ligands.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Edward J. Reijerse
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Daniel J. SantaLucia
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Alexander Schnegg
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Švec P, Vránová I, Růžičková Z, Samsonov MA, Dostál L, Růžička A. C, N-CHELATED ANTIMONY AND BISMUTH COMPLEXES; OXIDATION AND FLUORINATION. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
11
|
Birnthaler D, Narobe R, Lopez-Berguno E, Haag C, König B. Synthetic Application of Bismuth LMCT Photocatalysis in Radical Coupling Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dominik Birnthaler
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Rok Narobe
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Eliseo Lopez-Berguno
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Christoph Haag
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Obi AD, Dickie DA, Tiznado W, Frenking G, Pan S, Gilliard RJ. A Multidimensional Approach to Carbodiphosphorane–Bismuth Coordination Chemistry: Cationization, Redox-Flexibility, and Stabilization of a Crystalline Bismuth Hydridoborate. Inorg Chem 2022; 61:19452-19462. [DOI: 10.1021/acs.inorgchem.2c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Akachukwu D. Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago 8320000, Chile
| | - Gernot Frenking
- Philipps-Universität Marburg Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Sudip Pan
- Philipps-Universität Marburg Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Robert J. Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
13
|
Schwamm RJ, Kilpatrick AFR, Coles MP. Catenated (Bi)
n
(
n
=2, 3, 4) Complexes with Formally Monovalent Bismuth Centres. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ryan J. Schwamm
- School of Chemical and Physical Sciences Victoria University of Wellington Wellington PO Box 6012 New Zealand
| | | | - Martyn P. Coles
- School of Chemical and Physical Sciences Victoria University of Wellington Wellington PO Box 6012 New Zealand
| |
Collapse
|
14
|
Duneş G, Soran A, Silvestru C. Organopnictogen(III) bis(arylthiolates) containing NCN-aryl pincer ligands: from synthesis and characterization to reactivity. Dalton Trans 2022; 51:10406-10419. [PMID: 35762306 DOI: 10.1039/d2dt01436j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt elimination reactions between organopnictogen(III) dichlorides, RPnCl2 [R1 = 2,6-(Me2NCH2)2C6H3, Pn = Sb (1), Bi (2); R2 = 2,6-{MeN(CH2CH2)2NCH2}2C6H3, Pn = Sb (3), Bi (4); R3 = 2,6-{O(CH2CH2)2NCH2}2C6H3, Pn = Sb (5), Bi (6)] and 2 equivalents of KSC6H3Me2-2,6 afforded the isolation of a series of new NCN-chelated monoorganopnictogen(III) bis(arylthiolates), RPn(SC6H3Me2-2,6)2 [R1, Pn = Sb (7), Bi (8); R2, Pn = Sb (9), Bi (10); R3, Pn = Sb (11), Bi (12)]. Compounds 7 and 8 are unstable upon exposure to a dry O2 atmosphere and their aerobic decomposition yields the monoorganopnictogen(III) oxides, cyclo-[2,6-(Me2NCH2)2C6H3Pn(μ-O)]2 [Pn = Sb (13), Bi (14)] with concomitant formation of the corresponding disulfide, ArS-SAr (Ar = C6H3Me2-2,6). The oxidative addition of elemental sulfur or selenium to 7 undergoes a similar reaction path and gives stable heterocyclic species cyclo-[2,6-(Me2NCH2)2C6H3Sb(μ-E)]2 [E = S (15), Se (16)]. The reaction of 12 with I2 (1 : 1 molar ratio) gives the diiodide [2,6-{O(CH2CH2)2NCH2}2C6H3]BiI2 (17), along with the S-S oxidative coupling by-product, ArS-SAr. The use of an excess of iodine affords the crystallization of a 2 : 1 iodine adduct of 17 (17·0.5I2), built through halogen bonding. All new compounds were characterized by multinuclear NMR spectroscopy and ESI-MS as well as single crystal X-ray diffraction (except compounds 9 and 10).
Collapse
Affiliation(s)
- Gabriel Duneş
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| | - Albert Soran
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| | - Cristian Silvestru
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
15
|
Brehm PC, Müller-Feyen AS, Schnakenburg G, Streubel R. 1,3,2-Diheterophospholane complexes: access to new tuneable precursors of phosphanoxyl complexes and P-functional polymers. Dalton Trans 2022; 51:4400-4405. [PMID: 35195141 DOI: 10.1039/d2dt00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Synthesis of a testbed of P-H functional diheterophospholane complexes (3 and 6a,b) with no or little steric bulk at the α-position was achieved using [NEt4][WH(CO)5] as a combined reductant and complexation reagent. Reaction with TEMPO leads to P-OTEMP substituted tungsten complexes (4 and 7a,b) possessing different thermostabilities towards N-O bond cleavage. The transient phosphanoxyl complexes obtained were used for the polymerisation of styrene and acrylonitrile. DFT calculations were performed on the formation of various open-shell complexes and Loewdin spin density distributions.
Collapse
Affiliation(s)
- Philipp C Brehm
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Anne S Müller-Feyen
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Rainer Streubel
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
16
|
Ramler J, Schwarzmann J, Stoy A, Lichtenberg C. Two Faces of the Bi-O Bond: Photochemically and Thermally Induced Dehydrocoupling for Si-O Bond Formation. Eur J Inorg Chem 2022; 2022:e202100934. [PMID: 35873275 PMCID: PMC9300068 DOI: 10.1002/ejic.202100934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Indexed: 11/27/2022]
Abstract
The diorgano(bismuth)alcoholate [Bi((C6H4CH2)2S)OPh] (1-OPh) has been synthesized and fully characterized. Stoichiometric reactions, UV/Vis spectroscopy, and (TD-)DFT calculations suggest its susceptibility to homolytic and heterolytic Bi-O bond cleavage under given reaction conditions. Using the dehydrocoupling of silanes with either TEMPO or phenol as model reactions, the catalytic competency of 1-OPh has been investigated (TEMPO=(tetramethyl-piperidin-1-yl)-oxyl). Different reaction pathways can deliberately be addressed by applying photochemical or thermal reaction conditions and by choosing radical or closed-shell substrates (TEMPO vs. phenol). Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single-crystal X-ray diffraction analysis, and (TD)-DFT calculations.
Collapse
Affiliation(s)
- Jacqueline Ramler
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Schwarzmann
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Stoy
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
- Philipps-Universität MarburgFachbereich ChemieHans-Meerwein-Str. 435032MarburgGermany
| | - Crispin Lichtenberg
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
- Philipps-Universität MarburgFachbereich ChemieHans-Meerwein-Str. 435032MarburgGermany
| |
Collapse
|
17
|
Moon HW, Cornella J. Bismuth Redox Catalysis: An Emerging Main-Group Platform for Organic Synthesis. ACS Catal 2022; 12:1382-1393. [PMID: 35096470 PMCID: PMC8787757 DOI: 10.1021/acscatal.1c04897] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Indexed: 12/11/2022]
Abstract
![]()
Bismuth has recently
been shown to be able to maneuver between
different oxidation states, enabling access to unique redox cycles
that can be harnessed in the context of organic synthesis. Indeed,
various catalytic Bi redox platforms have been discovered and revealed
emerging opportunities in the field of main group redox catalysis.
The goal of this perspective is to provide an overview of the synthetic
methodologies that have been developed to date, which capitalize on
the Bi redox cycling. Recent catalytic methods via low-valent Bi(II)/Bi(III),
Bi(I)/Bi(III), and high-valent Bi(III)/Bi(V) redox couples are covered
as well as their underlying mechanisms and key intermediates. In addition,
we illustrate different design strategies stabilizing low-valent and
high-valent bismuth species, and highlight the characteristic reactivity
of bismuth complexes, compared to the lighter p-block
and d-block elements. Although it is not redox catalysis
in nature, we also discuss a recent example of non-Lewis acid, redox-neutral
Bi(III) catalysis proceeding through catalytic organometallic steps.
We close by discussing opportunities and future directions in this
emerging field of catalysis. We hope that this Perspective will provide
synthetic chemists with guiding principles for the future development
of catalytic transformations employing bismuth.
Collapse
Affiliation(s)
- Hye Won Moon
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
18
|
Magre M, Cornella J. Redox-Neutral Organometallic Elementary Steps at Bismuth: Catalytic Synthesis of Aryl Sulfonyl Fluorides. J Am Chem Soc 2021; 143:21497-21502. [PMID: 34914387 PMCID: PMC8719321 DOI: 10.1021/jacs.1c11463] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A Bi-catalyzed synthesis of sulfonyl fluorides from the corresponding (hetero)aryl boronic acids is presented. We demonstrate that the organobismuth(III) catalysts bearing a bis-aryl sulfone ligand backbone revolve through different canonical organometallic steps within the catalytic cycle without modifying the oxidation state. All steps have been validated, including the catalytic insertion of SO2 into Bi-C bonds, leading to a structurally unique O-bound bismuth sulfinate complex. The catalytic protocol affords excellent yields for a wide range of aryl and heteroaryl boronic acids, displaying a wide functional group tolerance.
Collapse
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
19
|
Ramler J, Fantuzzi F, Geist F, Hanft A, Braunschweig H, Engels B, Lichtenberg C. The Dimethylbismuth Cation: Entry Into Dative Bi-Bi Bonding and Unconventional Methyl Exchange. Angew Chem Int Ed Engl 2021; 60:24388-24394. [PMID: 34378855 PMCID: PMC8596701 DOI: 10.1002/anie.202109545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Indexed: 01/06/2023]
Abstract
The isolation of simple, fundamentally important, and highly reactive organometallic compounds remains among the most challenging tasks in synthetic chemistry. The detailed characterization of such compounds is key to the discovery of novel bonding scenarios and reactivity. The dimethylbismuth cation, [BiMe2 (SbF6 )] (1), has been isolated and characterized. Its reaction with BiMe3 gives access to an unprecedented dative bond, a Bi→Bi donor-acceptor interaction. The exchange of methyl groups (arguably the simplest hydrocarbon moiety) between different metal atoms is among the most principal types of reactions in organometallic chemistry. The reaction of 1 with BiMe3 enables an SE 2(back)-type methyl exchange, which is, for the first time, investigated in detail for isolable, (pseudo-)homoleptic main-group compounds.
Collapse
Affiliation(s)
- Jacqueline Ramler
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany), E-mai
| | - Felipe Fantuzzi
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany), E-mai
- Institute of Physical and Theoretical ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Felix Geist
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany), E-mai
| | - Anna Hanft
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany), E-mai
| | - Holger Braunschweig
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany), E-mai
| | - Bernd Engels
- Institute of Physical and Theoretical ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Crispin Lichtenberg
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany), E-mai
| |
Collapse
|
20
|
Ramler J, Fantuzzi F, Geist F, Hanft A, Braunschweig H, Engels B, Lichtenberg C. Das Dimethylbismut‐Kation: Zugang zu dativen Bi‐Bi‐Bindungen und unkonventionellem Methylaustausch. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jacqueline Ramler
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland), E-mai
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland), E-mai
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Felix Geist
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland), E-mai
| | - Anna Hanft
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland), E-mai
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland), E-mai
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Crispin Lichtenberg
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland), E-mai
| |
Collapse
|
21
|
Wang Y, Zhou J, Ma X, Li X, Lang X. Cooperative Photocatalysis with 4-Amino-TEMPO for Selective Aerobic Oxidation of Amines over TiO 2 Nanotubes. Chem Asian J 2021; 16:2659-2668. [PMID: 34302305 DOI: 10.1002/asia.202100682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Indexed: 12/17/2022]
Abstract
Attaching π-conjugated molecules onto TiO2 can form surface complexes that could capture visible light. However, to make these TiO2 surface complexes durable, integrating 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) or its analogues as a redox mediator with photocatalysis is the key to constructing selective chemical transformations. Herein, sodium 6,7-dihydroxynaphthalene-2-sulfonate (DHNS) was obtained by extending the π-conjugated system of catechol by adding a benzene ring and a substituent sodium sulfonate (-SO3 - Na+ ). The DHNS-TiO2 showed the best photocatalytic activity towards the blue light-induced selective aerobic oxidation of benzylamine. Compared to TEMPO, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO) could rise above 70% in conversion of benzylamine over the DHNS-TiO2 photocatalyst. Eventually, a wide range of amines could be selectively oxidized into imines with atmospheric O2 by cooperative photocatalysis of DHNS-TiO2 with 4-amino-TEMPO. Notably, superoxide (O2 •- ) is crucial in coupling the photocatalytic cycle of DHNS-TiO2 and the redox cycle of 4-amino-TEMPO. This work underscores the design of surface ligands for semiconductors and the selection of a redox mediator in visible light photocatalysis for selective chemical transformations.
Collapse
Affiliation(s)
- Yuexin Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Zhou
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoming Ma
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xia Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
22
|
Pang Y, Leutzsch M, Nöthling N, Katzenburg F, Cornella J. Catalytic Hydrodefluorination via Oxidative Addition, Ligand Metathesis, and Reductive Elimination at Bi(I)/Bi(III) Centers. J Am Chem Soc 2021; 143:12487-12493. [PMID: 34358426 PMCID: PMC8377712 DOI: 10.1021/jacs.1c06735] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Herein, we report a hydrodefluorination reaction of polyfluoroarenes catalyzed by bismuthinidenes, Phebox-Bi(I) and OMe-Phebox-Bi(I). Mechanistic studies on the elementary steps support a Bi(I)/Bi(III) redox cycle that comprises C(sp2)-F oxidative addition, F/H ligand metathesis, and C(sp2)-H reductive elimination. Isolation and characterization of a cationic Phebox-Bi(III)(4-tetrafluoropyridyl) triflate manifests the feasible oxidative addition of Phebox-Bi(I) into the C(sp2)-F bond. Spectroscopic evidence was provided for the formation of a transient Phebox-Bi(III)(4-tetrafluoropyridyl) hydride during catalysis, which decomposes at low temperature to afford the corresponding C(sp2)-H bond while regenerating the propagating Phebox-Bi(I). This protocol represents a distinct catalytic example where a main-group center performs three elementary organometallic steps in a low-valent redox manifold.
Collapse
Affiliation(s)
- Yue Pang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Felix Katzenburg
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
23
|
Zhao F, Wu XF. Sulfonylation of Bismuth Reagents with Sulfinates or SO2 through BiIII/BiV Intermediates. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
24
|
Shimada S, Yin SF, Bao M. A new C-anionic tripodal ligand 2-{bis(benzothiazolyl)(methoxy)methyl}phenyl and its bismuth complexes. Dalton Trans 2021; 50:7949-7954. [PMID: 34096567 DOI: 10.1039/d1dt01071a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A new tripodal C-anionic ligand, 2-{bis(benzothiazolyl)(methoxy)methyl}phenyl (L), was stably generated by the reaction of the ligand precursor (L'), the corresponding bromide (2-BrC6H4)(MeO)C(C7H4NS)2 (C7H4NS = 2-benzothiazolyl), with nBuLi at -104 °C in the presence of TMEDA (N,N,N',N'-tetramethylethylenediamine). The ligand lithium salt reacted with BiCl3 to give a 2 : 1 complex L2BiCl. A 1 : 1 complex LBiCl2 was obtained in good yield by the redistribution reaction between L2BiCl and BiCl3. X-ray diffraction analysis revealed that the ligand L coordinated in an expected κ3-C,N,N' coordination mode in LBiCl2, while it coordinated in κ3-C,N,O and κ2-C,O coordination modes in L2BiCl. The ligand precursor reacted with BiX3 (X = Cl, Br) to give 1 : 1 complexes L'BiX3 and was found to act as a neutral tripodal C(π),N,N-ligand.
Collapse
Affiliation(s)
- Shigeru Shimada
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
25
|
Ramler J, Lichtenberg C. Bismuth species in the coordination sphere of transition metals: synthesis, bonding, coordination chemistry, and reactivity of molecular complexes. Dalton Trans 2021; 50:7120-7138. [PMID: 34008669 DOI: 10.1039/d1dt01300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This contribution is focused on bismuth species in the coordination sphere of transition metals. In molecular transition metal complexes, three types of Bi-M bonding are considered, namely dative Bi→M interactions (with Bi acting as a donor), dative Bi←M interactions (with Bi acting as an acceptor) and covalent Bi-M interactions (M = transition metal). Synthetic routes to all three classes of compounds are outlined, the Bi-M bonding situation is discussed, trends in the geometric parameters and in the coordination chemistry of the compounds are addressed, and common spectroscopic properties are summarized. As an important part of this contribution, the reactivity of bismuth species in the coordination sphere of transition metal complexes in stoichiometric and catalytic reactions is highlighted.
Collapse
Affiliation(s)
- Jacqueline Ramler
- Department of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Crispin Lichtenberg
- Department of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
26
|
Matsubara K, Mitsuyama T, Shin S, Hori M, Ishikawa R, Koga Y. Homoleptic Cobalt(II) Phenoxyimine Complexes for Hydrosilylation of Aldehydes and Ketones without Base Activation of Cobalt(II). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kouki Matsubara
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Tomoaki Mitsuyama
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Sayaka Shin
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Momoko Hori
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Ryuta Ishikawa
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Yuji Koga
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| |
Collapse
|
27
|
Hanft A, Radacki K, Lichtenberg C. Cationic Bismuth Aminotroponiminates: Charge Controls Redox Properties. Chemistry 2021; 27:6230-6239. [PMID: 33326650 PMCID: PMC8048980 DOI: 10.1002/chem.202005186] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 01/03/2023]
Abstract
The behavior of the redox‐active aminotroponiminate (ATI) ligand in the coordination sphere of bismuth has been investigated in neutral and cationic compounds, [Bi(ATI)3] and [Bi(ATI)2Ln][A] (L=neutral ligand; n=0, 1; A=counteranion). Their coordination chemistry in solution and in the solid state has been analyzed through (variable‐temperature) NMR spectroscopy, line‐shape analysis, and single‐crystal X‐ray diffraction analyses, and their Lewis acidity has been evaluated by using the Gutmann–Beckett method (and modifications thereof). Cyclic voltammetry, in combination with DFT calculations, indicates that switching between ligand‐ and metal‐centered redox events is possible by altering the charge of the compounds from 0 in neutral species to +1 in cationic compounds. This adds important facets to the rich redox chemistry of ATIs and to the redox chemistry of bismuth compounds, which is, so far, largely unexplored.
Collapse
Affiliation(s)
- Anna Hanft
- Department of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Krzysztof Radacki
- Department of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Crispin Lichtenberg
- Department of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
28
|
Oberdorf K, Hanft A, Ramler J, Krummenacher I, Bickelhaupt FM, Poater J, Lichtenberg C. Bismutamide als einfache Vermittler hochselektiver Pn−Pn‐Radikal‐Kupplungsreaktionen (Pn=N, P, As). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kai Oberdorf
- Institut für Anorganische Chemie Julius-Maximilians-Universität, Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Anna Hanft
- Institut für Anorganische Chemie Julius-Maximilians-Universität, Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Jacqueline Ramler
- Institut für Anorganische Chemie Julius-Maximilians-Universität, Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Ivo Krummenacher
- Institut für Anorganische Chemie Julius-Maximilians-Universität, Würzburg Am Hubland 97074 Würzburg Deutschland
| | - F. Matthias Bickelhaupt
- Institut für Theoretische Chemie, ACMM Vrije Universiteit Amsterdam Niederlande
- Institut für Moleküle und Materialien Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Niederlande
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB Universitat de Barcelona & ICREA Pg. Lluís Companys 23 08010 Barcelona Spanien
| | - Crispin Lichtenberg
- Institut für Anorganische Chemie Julius-Maximilians-Universität, Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
29
|
Oberdorf K, Hanft A, Ramler J, Krummenacher I, Bickelhaupt FM, Poater J, Lichtenberg C. Bismuth Amides Mediate Facile and Highly Selective Pn-Pn Radical-Coupling Reactions (Pn=N, P, As). Angew Chem Int Ed Engl 2021; 60:6441-6445. [PMID: 33315293 PMCID: PMC7986226 DOI: 10.1002/anie.202015514] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/14/2022]
Abstract
The controlled release of well-defined radical species under mild conditions for subsequent use in selective reactions is an important and challenging task in synthetic chemistry. We show here that simple bismuth amide species [Bi(NAr2 )3 ] readily release aminyl radicals [NAr2 ]. at ambient temperature in solution. These reactions yield the corresponding hydrazines, Ar2 N-NAr2 , as a result of highly selective N-N coupling. The exploitation of facile homolytic Bi-Pn bond cleavage for Pn-Pn bond formation was extended to higher homologues of the pnictogens (Pn=N-As): homoleptic bismuth amides mediate the highly selective dehydrocoupling of HPnR2 to give R2 Pn-PnR2 . Analyses by NMR and EPR spectroscopy, single-crystal X-ray diffraction, and DFT calculations reveal low Bi-N homolytic bond-dissociation energies, suggest radical coupling in the coordination sphere of bismuth, and reveal electronic and steric parameters as effective tools to control these reactions.
Collapse
Affiliation(s)
- Kai Oberdorf
- Department of Inorganic ChemistryJulius-Maximilians-Universität, WürzburgAm Hubland97074WürzburgGermany
| | - Anna Hanft
- Department of Inorganic ChemistryJulius-Maximilians-Universität, WürzburgAm Hubland97074WürzburgGermany
| | - Jacqueline Ramler
- Department of Inorganic ChemistryJulius-Maximilians-Universität, WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Department of Inorganic ChemistryJulius-Maximilians-Universität, WürzburgAm Hubland97074WürzburgGermany
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry, ACMMVrije UniversiteitAmsterdamThe Netherlands
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de Barcelona & ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - Crispin Lichtenberg
- Department of Inorganic ChemistryJulius-Maximilians-Universität, WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
30
|
Lipshultz JM, Li G, Radosevich AT. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. J Am Chem Soc 2021; 143:1699-1721. [PMID: 33464903 PMCID: PMC7934640 DOI: 10.1021/jacs.0c12816] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing number of organopnictogen redox catalytic methods have emerged-especially within the past 10 years-that leverage the plentiful reversible two-electron redox chemistry within Group 15. The goal of this Perspective is to provide readers the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye toward future development. An exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the backdrop against which organopnictogen redox reactivity-and ultimately catalysis-is framed. A deep appreciation of these underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Dunaj T, Dollberg K, Ritter C, Dankert F, Hänisch C. 2,6‐Diisopropylphenyl‐Substituted Bismuth Compounds: Synthesis, Structure, and Reactivity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tobias Dunaj
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Kevin Dollberg
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Christian Ritter
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Fabian Dankert
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Carsten Hänisch
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
32
|
Lichtenberg C. Molecular bismuth(iii) monocations: structure, bonding, reactivity, and catalysis. Chem Commun (Camb) 2021; 57:4483-4495. [DOI: 10.1039/d1cc01284c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Structurally defined, molecular bismuth(iii) cations show remarkable properties in coordination chemistry, Lewis acidity, and redox chemistry, allowing for unique applications in synthetic chemistry.
Collapse
Affiliation(s)
- Crispin Lichtenberg
- Julius-Maximilians-University Würzburg
- Institute of Inorganic Chemistry Am Hubland
- 97074 Würzburg
- Germany
| |
Collapse
|
33
|
Ramler J, Krummenacher I, Lichtenberg C. Well-Defined, Molecular Bismuth Compounds: Catalysts in Photochemically Induced Radical Dehydrocoupling Reactions. Chemistry 2020; 26:14551-14555. [PMID: 32573876 PMCID: PMC7821184 DOI: 10.1002/chem.202002219] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Indexed: 01/12/2023]
Abstract
A series of diorgano(bismuth)chalcogenides, [Bi(di-aryl)EPh], has been synthesised and fully characterised (E=S, Se, Te). These molecular bismuth complexes have been exploited in homogeneous photochemically-induced radical catalysis, using the coupling of silanes with TEMPO as a model reaction (TEMPO=(tetramethyl-piperidin-1-yl)-oxyl). Their catalytic properties are complementary or superior to those of known catalysts for these coupling reactions. Catalytically competent intermediates of the reaction have been identified. Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single-crystal X-ray diffraction analysis, and (TD)-DFT calculations.
Collapse
Affiliation(s)
- Jacqueline Ramler
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronAm Hubland97074WürzburgGermany
| | - Crispin Lichtenberg
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
34
|
Pang Y, Leutzsch M, Nöthling N, Cornella J. Catalytic Activation of N 2O at a Low-Valent Bismuth Redox Platform. J Am Chem Soc 2020; 142:19473-19479. [PMID: 33146996 PMCID: PMC7677929 DOI: 10.1021/jacs.0c10092] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Herein
we present the catalytic activation of N2O at
a BiI⇄BiIII redox platform. The activation
of such a kinetically inert molecule was achieved by the use of bismuthinidene
catalysts, aided by HBpin as reducing agent. The protocol features
remarkably mild conditions (25 °C, 1 bar N2O), together
with high turnover numbers (TON, up to 6700) and turnover frequencies
(TOF). Analysis of the elementary steps enabled structural characterization
of catalytically relevant intermediates after O-insertion, namely
a rare arylbismuth oxo dimer and a unique monomeric arylbismuth hydroxide.
This protocol represents a distinctive example of a main-group redox
cycling for the catalytic activation of N2O.
Collapse
Affiliation(s)
- Yue Pang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|