1
|
Halcrow MA. Mix and match - controlling the functionality of spin-crossover materials through solid solutions and molecular alloys. Dalton Trans 2024; 53:13694-13708. [PMID: 39119634 DOI: 10.1039/d4dt01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The influence of dopant molecules on the structure and functionality of spin-crossover (SCO) materials is surveyed. Two aspects of the topic are well established. Firstly, isomorphous inert metal ion dopants in SCO lattices are a useful probe of the energetics of SCO processes. Secondly, molecular alloys of iron(II)/triazole coordination polymers containing mixtures of ligands were used to tune their spin-transitions towards room temperature. More recent examples of these and related materials are discussed that reveal new insights into these questions. Complexes which are not isomorphous can also be co-crystallised, either as solid solutions of the precursor molecules or as a random distribution of homo- and hetero-leptic centres in a molecular alloy. This could be a powerful method to manipulate SCO functionality. Published molecular alloys show different SCO behaviours, which may or may not include allosteric switching of their chemically distinct metal sites.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
2
|
Orellana-Silla A, Meneses-Sánchez M, Turo-Cortés R, Muñoz MC, Bartual-Murgui C, Real JA. Symmetry Breaking and Cooperative Spin Crossover in a Hofmann-Type Coordination Polymer Based on Negatively Charged {Fe II(μ 2-[M II(CN) 4]) 2} n2n- Layers (M II = Pd, Pt). Inorg Chem 2023; 62:12783-12792. [PMID: 37526289 PMCID: PMC10428219 DOI: 10.1021/acs.inorgchem.3c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/02/2023]
Abstract
We report herein the synthesis and characterization of two unprecedented isomorphous spin-crossover two-dimensional coordination polymers of the Hofmann-type formulated {FeII(Hdpyan)2(μ2-[MII(CN)4])2}, with MII = Pd, Pt and Hdpyan is the in situ partially protonated form of 2,5-(dipyridin-4-yl)aniline (dpyan). The FeII is axially coordinated by the pyridine ring attached to the 2-position of the aniline ring, while it is equatorially surrounded by four [MII(CN)4]2- planar groups acting as trans μ2-bidentate ligands defining layers, which stack parallel to each other. The other pyridine group of Hdpyan, being protonated, remains peripheral but involved in a strong [MII-C≡N···Hpy+] hydrogen bond between alternate layers. This provokes a nearly 90° rotation of the plane defined by the [MII(CN)4]2- groups, with respect to the average plane defined by the layers, forcing the observed uncommon bridging mode and the accumulation of negative charge around each FeII, which is compensated by the axial [Hdpyan]+ ligands. According to the magnetic and calorimetric data, both compounds undergo a strong cooperative spin transition featuring a 10-12 K wide hysteresis loop centered at 220 (Pt) and 211 K (Pd) accompanied by large entropy variations, 97.4 (Pt) and 102.9 (Pd) J/K mol. The breaking symmetry involving almost 90° rotation of one of the two coordinated pyridines together with the large unit-cell volume change per FeII (ca. 50 Å3), and subsequent release of significantly short interlayer contacts upon the low-spin → high-spin event, accounts for the strong cooperativity.
Collapse
Affiliation(s)
- Alejandro Orellana-Silla
- Departamento
de Química Inorgánica, Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Paterna, 46980 Valencia, Spain
| | - Manuel Meneses-Sánchez
- Departamento
de Química Inorgánica, Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Paterna, 46980 Valencia, Spain
| | - Rubén Turo-Cortés
- Departamento
de Química Inorgánica, Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Paterna, 46980 Valencia, Spain
| | - M. Carmen Muñoz
- Departamento
de Fisica Aplicada, Universitat Politècnica
de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Carlos Bartual-Murgui
- Departamento
de Química Inorgánica, Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Paterna, 46980 Valencia, Spain
| | - José Antonio Real
- Departamento
de Química Inorgánica, Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Paterna, 46980 Valencia, Spain
| |
Collapse
|
3
|
Hiiuk VM, Shylin SI, Barakhtii DD, Korytko DM, Kotsyubynsky VO, Rotaru A, Shova S, Gural'skiy IA. Two-Step Spin Crossover in Hofmann-Type Coordination Polymers [Fe(2-phenylpyrazine) 2{M(CN) 2} 2] (M = Ag, Au). Inorg Chem 2022; 61:2093-2104. [PMID: 35029111 DOI: 10.1021/acs.inorgchem.1c03302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two 2D Hofmann-type complexes of the composition [Fe(Phpz)2{M(CN)2}2] (where Phpz = 2-phenylpyrazine; M = Ag, Au) have been synthesized, and their spin-crossover (SCO) behavior has been thoroughly characterized. Single-crystal X-ray analysis reveals that these complexes contain a crystallographically unique Fe(II) center surrounded by two axial Phpz ligands and four equatorial cyanide [M(CN)2]- bridges. It is shown that, using of a ligand with two aromatic rings, an advanced system of weak supramolecular interactions (metal-metal, C-H···M, and π···π stacking contacts) is realized. This ensures additional stabilization of the structures and the absence of solvent-accessible voids due to dense packing. Both complexes are characterized by a highly reproducible two-step SCO behavior, as revealed by different techniques (superconducting quantum interference device magnetometry, optical microscopy, etc.). Research shows the exceptional role of the presence of various supramolecular interactions in the structure and the influence of the bulky substituent in the ligand on SCO behavior. Moreover, the perspective of substituted pyrazines for the design of new switchable materials is supported by this work.
Collapse
Affiliation(s)
- Volodymyr M Hiiuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, 01601 Kyiv, Ukraine.,Faculty of Natural Sciences, National University of Kyiv-Mohyla Academy, 2 Skovorody Street, 04070 Kyiv, Ukraine
| | - Sergii I Shylin
- Ångström Laboratory, Department of Chemistry, Uppsala University, 75120 Uppsala, Sweden
| | - Diana D Barakhtii
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Dmytro M Korytko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Volodymyr O Kotsyubynsky
- Department of Material Science and New Technology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Street, 76018 Ivano-Frankivsk, Ukraine
| | - Aurelian Rotaru
- Faculty of Electrical Engineering and Computer Science & Research Center MANSiD, Stefan cel Mare University, 13 Universitatii Street, 720229 Suceava, Romania
| | - Sergiu Shova
- Ningbo University of Technology, No. 201, Fenghua Road, Ningbo City, Zhejiang 315211, China.,"Petru Poni" Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Il'ya A Gural'skiy
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, 01601 Kyiv, Ukraine
| |
Collapse
|
4
|
Xie Y, Lin R, Chen B. Old Materials for New Functions: Recent Progress on Metal Cyanide Based Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104234. [PMID: 34825524 PMCID: PMC8728855 DOI: 10.1002/advs.202104234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Cyanide is the simplest ligand with strong basicity to construct open frameworks including some of the oldest compounds reported in the history of coordination chemistry. Cyanide can form numerous cyanometallates with different transition metal ions showing diverse geometries. Rational design of robust extended networks is enabled by the strong bonding nature and high directionality of cyanide ligand. By virtue of a combination of cyanometallates and/or organic linkers, multifunctional framework materials can be targeted and readily synthesized for various applications, ranging from molecular adsorptions/separations to energy conversion and storage, and spin-crossover materials. External guest- and stimuli-responsive behaviors in cyanide-based materials are also highlighted for the development of the next-generation smart materials. In this review, an overview of the recent progress of cyanide-based multifunctional materials is presented to demonstrate the great potential of cyanide ligands in the development of modern coordination chemistry and material science.
Collapse
Affiliation(s)
- Yi Xie
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| | - Rui‐Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Banglin Chen
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| |
Collapse
|