1
|
Mubashra S, Rafiq A, Aslam S, Rasool N, Ahmad M. Recent synthetic strategies for N-arylation of pyrrolidines: a potential template for biologically active molecules. Mol Divers 2025; 29:1851-1893. [PMID: 39048884 DOI: 10.1007/s11030-024-10924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The chemistry of nitrogen-containing heterocyclic compounds has been a multifaceted area of research for an extended period due to their varied therapeutic and biological significance. N-Aryl pyrrolidine formed by condensation of aryl group with nitrogen atom of pyrrolidine is present in a wide array of compounds. Various significant activities shown by N-arylated pyrrolidine include anti-Alzheimer, antihypoxic, anticancer, plant activator, analgesic effect, and hepatitis C inhibitor. This review summarizes different synthetic approaches, e.g., transition-metal catalyzed and transition-metal-free synthesis, decarboxylation reaction, reductive amination, nucleophilic cyclization, Ullmann-Goldberg amidation, Buchwald-Hartwig reaction, Chan-Evans-Lam coupling, addition to benzyne, multistep reaction, green synthesis, rearrangement reaction, and multicomponent reaction, to afford the derivatives of N-aryl pyrrolidine. It encompasses synthetic strategies documented from 2015 to 2023.
Collapse
Affiliation(s)
- Saeeda Mubashra
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Nishino S, Sudo K, Kurahashi T. Nickel-Photoredox-Catalyzed Stereoconvergent Coupling of Alkenyl Halides and Nitrogen-Containing Heterocycles. Org Lett 2024; 26:4049-4054. [PMID: 38717164 DOI: 10.1021/acs.orglett.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Nitrogen-containing heterocycles possessing N-alkenyl substituents are an important structural motif. However, the synthetic methods reported thus far cannot selectively synthesize the Z stereoisomer on the basis of the stereochemistry of the substituted alkenes. Herein, we report the stereoconvergent coupling of heterocycles and alkenyl halides consisting of a mixture of E/Z stereoisomers, which selectively afforded the thermodynamically less stable Z-coupling product. Mechanistic studies suggest that a nickel photoredox catalyst facilitates the formation of N-centered heteroarene radicals.
Collapse
Affiliation(s)
- Sodai Nishino
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Kô Sudo
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Takuya Kurahashi
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
3
|
Han D, Sun J, Jin J. Picolinamide Ligands: Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Bromocyclopropane and Beyond. Chem Asian J 2023; 18:e202201132. [PMID: 36479828 DOI: 10.1002/asia.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The arylcyclopropane motif as the combination of aryl and cyclopropyl ring systems can be found in an increasing amount of approved and investigational drugs. Herein, we have developed a mild, efficient nickel-catalyzed reductive cross-coupling protocol, featuring a simple Ni(II) precatalyst and a novel picolinamide NN2 pincer ligand. A variety of (hetero)aryl bromides could successfully couple with cyclopropyl bromide to furnish the valued arylcyclopropanes in good to excellent yields. This method is applicable to other alkyl bromides as well. Notably, the reaction is tolerant of a broad range of functionalities including free amines. Furthermore, the synthesis of several significant intermediates of bioactive molecules was achieved in grams, proving the practicability of this method.
Collapse
Affiliation(s)
- Dongyang Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
4
|
Luo H, Wang G, Feng Y, Zheng W, Kong L, Ma Y, Matsunaga S, Lin L. Photoinduced Nickel-Catalyzed Carbon-Heteroatom Coupling. Chemistry 2023; 29:e202202385. [PMID: 36214656 DOI: 10.1002/chem.202202385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/07/2022]
Abstract
Herein, we report visible light-promoted single nickel catalysis for diverse carbon-heteroatom couplings under mild conditions. This mild, general, and robust method to couple diverse nitrogen, oxygen, and sulfur nucleophiles with aryl(heteroaryl)/alkenyl iodides/bromides exhibits a wide functional group tolerance and is applicable to late-stage modification of pharmaceuticals and natural products. On the base of preliminary mechanistic studies, a NiI /NiIII cycle via the generation of active NiI complexes that appear from homolysis of NiII -I rather than NiII -aryl bond was tentatively proposed.
Collapse
Affiliation(s)
- Hang Luo
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Guohua Wang
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Yunhui Feng
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Wanyao Zheng
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Lingya Kong
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Yunpeng Ma
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, 060-0812, Sapporo, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-Ku, 060-0812, Sapporo, Japan
| | - Luqing Lin
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-Ku, 060-0812, Sapporo, Japan
| |
Collapse
|
5
|
Li S, Huang X, Gao Y, Jin J. Oxalamide/Amide Ligands: Enhanced and Copper-Catalyzed C-N Cross-Coupling for Triarylamine Synthesis. Org Lett 2022; 24:5817-5824. [PMID: 35899986 DOI: 10.1021/acs.orglett.2c02364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triarylamines are privileged core structures that are found in versatile optoelectronic materials. New methods are constantly being sought for their preparation. Herein, a new protocol for triarylamine synthesis is presented where a wide range of diarylamines couple smoothly with aryl bromides mediated by a copper oxalamide (or amide) catalytic system. Notably, a new non-C2-symmetric 1-isoquinolinamide-based N,N-/N,O-bidentate ligand was introduced that could tolerate bulky diarylamines. Plenty of known optoelectronic functional molecules could be synthesized in good to excellent yields. The practicality of this C-N cross-coupling was illustrated by the gram-scale synthesis of a patented thermally activated delayed fluorescence emitter for organic light-emitting diodes.
Collapse
Affiliation(s)
- Sasa Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xia Huang
- College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yunlong Gao
- College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
6
|
Wolzak LA, de Zwart FJ, Oudsen JPH, Bartlett SA, de Bruin B, Reek JN, Tromp M, Korstanje TJ. Exogenous Ligand‐free Nickel‐catalyzed carboxylate O‐arylation Insight into NiI/NiIII cycles. ChemCatChem 2022. [DOI: 10.1002/cctc.202200547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lukas A. Wolzak
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Felix J. de Zwart
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Jean-Pierre H. Oudsen
- Technical University of Berlin: Technische Universitat Berlin Physical/Biophysical Chemistry GERMANY
| | | | - Bas de Bruin
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Joost N.H. Reek
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Moniek Tromp
- Rijksuniversiteit Groningen Faculty of Science and Engineering Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen NETHERLANDS
| | - Ties J. Korstanje
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| |
Collapse
|
7
|
Philip RM, Saranya PV, Anilkumar G. Nickel‐catalysed amination of arenes and heteroarenes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Gopinathan Anilkumar
- Mahatma Gandhi University School of Chemical Sciences Priyadarsini Hills P O 686560 KOTTAYAM INDIA
| |
Collapse
|
8
|
Hu K, Gao Y, Jin J. Nickel-Catalyzed N-Arylation of Diarylamines for Triarylamine Synthesis. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kunjun Hu
- College of Chemistry and Materials Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yunlong Gao
- College of Chemistry and Materials Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
9
|
Zhu C, Kale AP, Yue H, Rueping M. Redox-Neutral Cross-Coupling Amination with Weak N-Nucleophiles: Arylation of Anilines, Sulfonamides, Sulfoximines, Carbamates, and Imines via Nickelaelectrocatalysis. JACS AU 2021; 1:1057-1065. [PMID: 34467349 PMCID: PMC8395614 DOI: 10.1021/jacsau.1c00148] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 06/13/2023]
Abstract
A nickel-catalyzed cross-coupling amination with weak nitrogen nucleophiles is described. Aryl halides as well as aryl tosylates can be efficiently coupled with a series of weak N-nucleophiles, including anilines, sulfonamides, sulfoximines, carbamates, and imines via concerted paired electrolysis. Notably, electron-deficient anilines and sulfonamides are also suitable substrates. Interestingly, when benzophenone imine is applied in the arylation, the product selectivity toward the formation of amine and imine product can be addressed by a base switch. In addition, the alternating current mode can be successfully applied. DFT calculations support a facilitated reductive elimination pathway.
Collapse
|
10
|
Qin Y, Sun R, Gianoulis NP, Nocera DG. Photoredox Nickel-Catalyzed C–S Cross-Coupling: Mechanism, Kinetics, and Generalization. J Am Chem Soc 2021; 143:2005-2015. [DOI: 10.1021/jacs.0c11937] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yangzhong Qin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Rui Sun
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Nikolas P. Gianoulis
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
11
|
Liu W, Xu J, Chen X, Zhang F, Xu Z, Wang D, He Y, Xia X, Zhang X, Liang Y. CuI/2-Aminopyridine 1-Oxide Catalyzed Amination of Aryl Chlorides with Aliphatic Amines. Org Lett 2020; 22:7486-7490. [DOI: 10.1021/acs.orglett.0c02672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wenjie Liu
- Key Laboratory of Functional Organometallic Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, Hunan Province, PR China
| | - Jiamin Xu
- Key Laboratory of Functional Organometallic Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, Hunan Province, PR China
| | - Xiahong Chen
- Key Laboratory of Functional Organometallic Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, Hunan Province, PR China
| | - Fuxing Zhang
- Key Laboratory of Functional Organometallic Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, Hunan Province, PR China
| | - Zhifeng Xu
- Key Laboratory of Functional Organometallic Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, Hunan Province, PR China
| | - Deping Wang
- Key Laboratory of Functional Organometallic Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, Hunan Province, PR China
| | - Yongqiang He
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaohong Xia
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xin Zhang
- Key Laboratory of Functional Organometallic Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, Hunan Province, PR China
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yun Liang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|