1
|
Liu ZL, Wang YX, Yang ZQ, Yang YH, Liu YP, Hao WJ, Jiang B. Construction of central and axial chirality via Pd(II)/Bim-catalyzed asymmetric dearomative Michael reaction of polycyclic tropones. Chem Commun (Camb) 2024; 60:8908-8911. [PMID: 39091214 DOI: 10.1039/d4cc03166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
A highly enantioselective Pd/Bim-catalyzed dearomative Michael reaction applying polycyclic tropones as non-benzenoid aromatic Michael acceptors and arylboronic acids as aryl pronucleophiles has been developed. The bridged biaryls bearing central and axial chirality, including pentacyclic cyclohepta[b]indoles and 6,7-dihydrodibenzo[a,c][7]annulen-5-ones, are generally generated in good to high yields and excellent enantioselectivities and can be readily transformed into useful derivatives.
Collapse
Affiliation(s)
- Zi-Li Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yu-Xin Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Zi-Qi Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yu-Heng Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yin-Ping Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
2
|
Mandal PK, Patel S, Katukojvala S. Enal-azomethine ylides: application in the synthesis of functionalized pyrroles. Org Biomol Chem 2024; 22:5734-5738. [PMID: 38953694 DOI: 10.1039/d4ob00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Rhodium-catalyzed [3 + 2] annulation of diazoenals and N-alkyl imines resulted in N-alkyl-pyrrole-3-carbaldehyde derivatives. The reaction involves thermal 6π-electrocyclization and aromatization of a new class of enal-azomethine ylides (EAYs). The EAYs derived from dihydroisoquinoline and 2H-azirine gave fused-pyrrole and pyridine derivatives, respectively. The synthetic importance of pyrrole products has been demonstrated by one-step synthesis of the biologically relevant pyrrolo[3,2-c]quinoline scaffold as well as pyrrolo[2,1-a]isoquinoline which is a core structure of lamellarin alkaloids.
Collapse
Affiliation(s)
- Pratap Kumar Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066 India.
| | - Sandeep Patel
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066 India.
| | - Sreenivas Katukojvala
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066 India.
| |
Collapse
|
3
|
Kaasik M, Chen PP, Ričko S, Jørgensen KA, Houk KN. Asymmetric [4 + 2], [6 + 2], and [6 + 4] Cycloadditions of Isomeric Formyl Cycloheptatrienes Catalyzed by a Chiral Diamine Catalyst. J Am Chem Soc 2023; 145:23874-23890. [PMID: 37862136 DOI: 10.1021/jacs.3c09551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Novel asymmetric aminocatalytic cycloadditions are described between formyl cycloheptatrienes and 6,6-dimethylfulvene that lead to [4 + 2], [6 + 2], and [4 + 6] cycloadducts. The unprecedented reaction course is dependent on the position of the formyl functionality in the cycloheptatriene core, and each formyl cycloheptatriene isomer displays a distinct reactivity pattern. The formyl cycloheptatriene isomers are activated by a chiral primary diamine catalyst, and the activation mode is dependent on the position of the formyl functionality relative to the cycloheptatriene core. The [4 + 2] and [6 + 2] cycloadducts are formed via rare iminocatalytic inverse electron-demand cycloadditions, while the [4 + 6] cycloadduct is formed by a normal electron-demand cycloaddition. The reactivity displayed by the different formyl cycloheptatrienes was investigated by DFT calculations. These computational studies account for the different reaction paths for the three isomeric formyl cycloheptatrienes. The aminocatalytic [4 + 2], [6 + 2], and [4 + 6] cycloadditions proceed by stepwise processes, and the interplay between conjugation, substrate distortion, and dispersive interactions between the fulvene and aminocatalyst mainly defines the outcome of each cycloaddition.
Collapse
Affiliation(s)
- Mikk Kaasik
- Department of Chemistry, Aarhus University, DK-80000 Aarhus C, Denmark
| | - Pan-Pan Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Sebastijan Ričko
- Department of Chemistry, Aarhus University, DK-80000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
He J, Yang L, Zhang X, Xu W, Wang H, Lang M, Wang J, Peng S. Stereodivergent Syntheses of N-heterocycles by Catalyst-Controlled Reaction of Imidazolidines with Allenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jieyin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Liangliang Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Xue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Wendi Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Haiyang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Jian Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| |
Collapse
|
5
|
Li A, Gao Y, Lu JB, Chen ZC, Du W, Chen YC. Asymmetric higher-order [10 + n] cycloadditions of palladium-containing 10π-cycloaddends. Chem Sci 2022; 13:9265-9270. [PMID: 36092999 PMCID: PMC9384823 DOI: 10.1039/d2sc02985e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
We uncovered an asymmetric higher-order [10 + 2] cycloaddition reaction between diverse activated alkenes and a new type of π-allylpalladium complex-containing dipole-type 10π-cycloaddend, which was generated in situ from 2-methylene-1-indanols via a dehydrative insertion and deprotonation strategy under double activation of Pd(0) and phosphoric acid. A similar strategy was applied to an asymmetric higher-order [10 + 8] cycloaddition reaction or [10 + 4] cycloaddition reaction by using a heptafulvene derivative or a cyclic enone, respectively, as the acceptor. A variety of polycyclic frameworks imbedding an indene core were generally furnished in moderate to excellent yields with high levels of enantioselectivity by employing a newly designed chiral phosphoramidite ligand.
Collapse
Affiliation(s)
- Ao Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Yang Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Jian-Bin Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
- College of Pharmacy, Third Military Medical University Shapingba, Chongqing 400038 China
| |
Collapse
|
6
|
Synthesis of Substituted Tropones and Advancement for the Construction of Structurally Significant Skeletons. ChemistrySelect 2022. [DOI: 10.1002/slct.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Romaniszyn M, Sieroń L, Albrecht Ł. 5-Substituted-furan-2(3 H)-ones in [8 + 2]-Cycloaddition with 8,8-Dicyanoheptafulvene. J Org Chem 2022; 87:5296-5302. [PMID: 35349288 PMCID: PMC9016758 DOI: 10.1021/acs.joc.2c00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
This study demonstrates
the use of organocatalytic Brønsted
base activation of 5-substituted-furan-2(3H)-ones
to generate 2π-components for the diastereoselective [8 + 2]-cycloaddition
involving 8,8-dicyanoheptafulvene as an 8π-component. The use
of dienolates in a higher-order cycloaddition reaction leads to the
formation of biologically relevant polycyclic products bearing a γ-butyrolactone
structural motif, thus broadening the synthetic potential of Brønsted
base activated higher-order cycloadditions.
Collapse
Affiliation(s)
- Marta Romaniszyn
- Institute of Organic Chemistry, Department of Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| | - Lesław Sieroń
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Department of Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
8
|
|
9
|
Guin A, Gaykar RN, Deswal S, Biju AT. Three-Component, Diastereoselective [6 + 3] Annulation of Tropone, Imino Esters, and Arynes. Org Lett 2021; 23:7456-7461. [PMID: 34510902 DOI: 10.1021/acs.orglett.1c02662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A transition-metal-free, three-component, and diastereoselective [6 + 3] annulation reaction employing tropone, imino esters, and arynes allowing the synthesis of bridged azabicyclo[4.3.1]decadienes is demonstrated. The key nitrogen ylides for the [6 + 3] annulation were generated by the addition of imino esters to the arynes followed by a proton transfer. The nitrogen ylides undergo a regioselective addition to tropone to furnish the desired products in moderate to good yields with good functional group tolerance under mild conditions.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rahul N Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Houk KN, Xue X, Liu F, Chen Y, Chen X, Jamieson C. Computations on Pericyclic Reactions Reveal the Richness of Ambimodal Transition States and Pericyclases. Isr J Chem 2021. [DOI: 10.1002/ijch.202100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- K. N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095-1569 USA
| | - Xiao‐Song Xue
- Department of Chemistry Nankai University Tianjin 300071 China
| | - Fang Liu
- College of Sciences Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Yu Chen
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095-1569 USA
| | - Cooper Jamieson
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095-1569 USA
| |
Collapse
|
11
|
Jessen NI, Bura M, Bertuzzi G, Jørgensen KA. Aminocatalytic [8+2] Cycloaddition Reactions toward Chiral Cyclazines. Angew Chem Int Ed Engl 2021; 60:18527-18531. [PMID: 34101936 DOI: 10.1002/anie.202106287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 01/18/2023]
Abstract
An efficient and exceptionally stereoselective synthesis of chiral cycl[3.2.2]azines has been realized by means of the rational design and utilization of novel (E)-3-benzylidene-3H-pyrrolizines in iminium-ion-catalyzed [8+2] cycloaddition reactions. The presented protocol allows for the incorporation of diverse enals, including cinnamaldehydes, enolizable aldehydes, and substrates of extended conjugation. The obtained products contain both an electron-rich alkenyl pyrrole moiety and an electron-deficient carbaldehyde substituent, and both moieties can undergo selective transformations with retention of the stereochemical information established in the [8+2] cycloaddition.
Collapse
Affiliation(s)
| | - Maksimilian Bura
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Giulio Bertuzzi
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
12
|
Jessen NI, Bura M, Bertuzzi G, Jørgensen KA. Aminocatalytic [8+2] Cycloaddition Reactions toward Chiral Cyclazines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Maksimilian Bura
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Giulio Bertuzzi
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
13
|
Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Construction of bridged polycycles through dearomatization strategies. Org Biomol Chem 2021; 19:3960-3982. [PMID: 33978039 DOI: 10.1039/d1ob00096a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bridged polycycles are privileged molecular skeletons with wide occurrence in bioactive natural products and pharmaceuticals. Therefore, they have been the pursing target molecules of numerous chemists. The rapid and convenient generation of sp3-rich complex three-dimensional molecular skeletons from simple and easily available aromatics has made dearomatization a highly valuable synthetic tool for the construction of rigid and challenging bridged rings. This review summarizes the-state-of-the-art advances of dearomatization strategies in the application of bridged ring formation, discusses their advantages and limitations and the in-depth mechanism, and highlights their synthetic value in the total synthesis of natural products. We wish this review will provide an important reference for medicinal and synthetic chemists and will inspire further development in this intriguing research area.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
14
|
Chen X, Thøgersen MK, Yang L, Lauridsen RF, Xue XS, Jørgensen KA, Houk KN. [8+2] vs [4+2] Cycloadditions of Cyclohexadienamines to Tropone and Heptafulvenes-Mechanisms and Selectivities. J Am Chem Soc 2021; 143:934-944. [PMID: 33416311 DOI: 10.1021/jacs.0c10966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cinchona-alkaloid-catalyzed cycloaddition reactions of 2-cyclohexenone with tropone and various heptafulvenes give [8+2] or [4+2] cycloadducts, depending on the substituents present on the heptafulvene. We report the results of new experiments with heptafulvenes, containing diester and barbiturate substituents, which in combination with computational studies were performed to elucidate the factors controlling [8+2] vs [4+2] cycloaddition pathways, including chemo-, regio-, and stereoselectivities of these higher-order cycloadditions. The protonated cinchona alkaloid primary amine catalyst reacts with 2-cyclohexenone to form a linear dienamine intermediate that subsequently undergoes a stepwise [8+2] or [4+2] cycloaddition. Both tropone and the different heptafulvenes initially form [8+2] cycloadducts. The final product is ultimately decided by the reversibility of the [8+2] cycloaddition and the relative thermal stability of the [4+2] products. The stereoisomeric transition states are distinguished by the steric interactions between the protonated catalyst and tropone/heptafulvenes. The [8+2] cycloaddition of barbiturate-heptafulvene afforded products with an unprecedented trans-fusion of the five- and six-membered rings, while the [8+2] cycloadducts obtained from cyanoester-heptafulvene and diester-heptafulvene were formed with a cis-relationship. The mechanism, thermodynamics, and origins of stereoselectivity were explained through DFT calculations using the ωB97X-D density functional.
Collapse
Affiliation(s)
- Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | | | - Limin Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.,College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Rune F Lauridsen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Xiao-Song Xue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | | | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Yang WL, Ni T, Deng WP. Iridium-Catalyzed Diastereo- and Enantioselective [4 + 3] Cycloaddition of 4-Indolyl Allylic Alcohols with Azomethine Ylides. Org Lett 2021; 23:588-594. [PMID: 33404250 DOI: 10.1021/acs.orglett.0c04132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An unprecedented iridium-catalyzed asymmetric [4 + 3] cycloaddition of racemic 4-indolyl allylic alcohols with azomethine ylides is reported. The ability of acid promoter zinc triflate to perform multiple roles is the key factor for the success of this strategy. This method provides scalable and efficient access to biologically important azepino[3,4,5-cd] indoles in good yields with generally excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Mild reaction conditions, easily accessible substrates and chiral catalyst, and broad substrate scope highlight the practicality of this methodology.
Collapse
Affiliation(s)
- Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Tao Ni
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|