1
|
Behmagham F, Mustafa MA, Saraswat SK, Khalaf KA, Kaur M, Ghildiyal P, Vessally E. Recent investigations into deborylative (thio-/seleno-) cyanation of aryl boronic acids. RSC Adv 2024; 14:9184-9199. [PMID: 38505389 PMCID: PMC10949121 DOI: 10.1039/d4ra00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
In this review, we intend to summarize the most important discoveries in the deborylative (thio-/seleno-) cyanation of aryl boronic acids from 2006 to the end of 2023. Thus, the review is divided into three parts. The first section focuses exclusively on cyanation of aryl boronic acids into aryl nitriles. The second section covers the available literature on the synthesis of aryl thiocyanates through thiocyanation of respective aryl boronic acids. The third will discuss selenocyanation of aryl boronic acids into aryl selenocyanates.
Collapse
Affiliation(s)
- Farnaz Behmagham
- Department of Chemistry, Islamic Azad University Miandoab Branch Miandoab Iran
| | | | | | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University Bengaluru Karnataka 560069 India
- Department of Sciences, Vivekananda Global University Jaipur Rajasthan 303012 India
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University Dehradun India
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| |
Collapse
|
2
|
Wang HH, Zhu YY, Chen CL, Huang XB, Liu MC, Zhou YB, Wu HY. Transition-metal-free four-component reaction of nitriles and disulfides/diselenides. Chem Commun (Camb) 2024; 60:862-865. [PMID: 38131618 DOI: 10.1039/d3cc05416k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
One-pot synthesis of structurally diverse sulfurized/selenated 4-aminopyrimidines has been reported via t-BuOK/K2S2O8-promoted four-component reaction of mixed nitriles and disulfides/diselenides. Mechanistic studies indicate that the reaction proceeds through radical and ionic pathways, and an alkenyl sulfide serves as a key intermediate.
Collapse
Affiliation(s)
- Hui-Hui Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Yang-Yun Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Chuan-Li Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Xiao-Bo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| |
Collapse
|
3
|
Cheng Z, Qiu X, Xiong B, Zhang Y, Zeng X. Synthesis of Benzoselenophenes via TMSCN-Enabled Radical-Mediated Tandem Reaction Involving Enamides and Elemental Selenium. Org Lett 2023; 25:6665-6670. [PMID: 37650542 DOI: 10.1021/acs.orglett.3c02485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This study presents a TMSCN-enabled tandem reaction involving enamides and elemental selenium to access a diverse array of benzoselenophenes. Notably, this methodology involves the direct 2-fold C(sp2)-H bond activation without the need for preinstalled halides or boronic acids as reaction handles. The protocol offers several noteworthy features, including the absence of transition metals and strong oxidants, high reaction efficiency, broad substrate scopes, and the use of stable elemental selenium as a selenium source.
Collapse
Affiliation(s)
- Zhenfeng Cheng
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China
| | - Xiaodong Qiu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China
| | - Biao Xiong
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China
| | - Yanan Zhang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China
| | - Xiaobao Zeng
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
4
|
Ali D, Mondal N, Panday AK, Choudhury LH. Synthesis of Selenocyanates and Selenoethers of Amino Pyrazoles and Amino Uracils by In Situ Triselenium Dicyanide from Malononitrile and Selenium Dioxide. ACS OMEGA 2023; 8:25349-25357. [PMID: 37483204 PMCID: PMC10357565 DOI: 10.1021/acsomega.3c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023]
Abstract
Herein, we report an efficient method for synthesis of novel selenocyanates of amino pyrazole, amino uracil, and amino isoxazole derivatives using in situ triselenium dicyanide from the combination of malononitrile and selenium dioxide in DMSO medium. Using the same combination but changing the stoichiometry of reagents and sequence of addition and temperature, symmetrical selenoethers of amino pyrazoles and amino uracils were prepared in good yields. Furthermore, selenocyanates of amino pyrazoles were utilized for the synthesis of corresponding alkynyl selenides in the presence of CuI and Cs2CO3. The salient features of this methodology are inexpensive starting materials, short reaction time, and good to very good yields. This method is also applicable for the gram-scale synthesis of selenocyanates of amino pyrazoles and amino uracils.
Collapse
|
5
|
Badirujjaman M, Pal N, Bhabak KP. Small-molecule organoselenocyanates: Recent developments toward synthesis, anticancer, and antioxidant activities. Curr Opin Chem Biol 2023; 75:102337. [PMID: 37276751 DOI: 10.1016/j.cbpa.2023.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
Cellular redox homeostasis is very important for the overall cellular development, function, and oxidative stress often disrupts the process. Small-molecule organoselenium compounds exert key roles in maintaining the redox homeostasis during oxidative stress and cancer owing to their notable antioxidant activities. Among different organoselenium compounds, small-molecule organoselenocyanates have attracted much research attention due to their synthetic utilities and therapeutic potentials. Therefore, the development of convenient synthetic methodologies to different classes of organoselenocyanates from various precursors was explored over the years as useful synthetic building blocks. Additionally, considering their inherent redox and antioxidant properties, the development of biologically relevant organoselenocyanates upon their conjugation with the existing drugs and natural products has been chosen for enhancing the drug potencies and in ameliorating the drug-induced side-effects. In the present report, we have discussed some of the very recent and relevant developments on these aspects in a very concise manner.
Collapse
Affiliation(s)
- Md Badirujjaman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikita Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Bresciani G, Zacchini S, Pampaloni G, Bortoluzzi M, Marchetti F. Diiron Aminocarbyne Complexes with NCE− Ligands (E = O, S, Se). Molecules 2023; 28:molecules28073251. [PMID: 37050013 PMCID: PMC10096932 DOI: 10.3390/molecules28073251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Diiron μ-aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Xyl, [1aNCMe]CF3SO3; R = Me, [1bNCMe]CF3SO3; R = Cy, [1cNCMe]CF3SO3; R = CH2Ph, [1dNCMe]CF3SO3), freshly prepared from tricarbonyl precursors [1a–d]CF3SO3, reacted with NaOCN (in acetone) and NBu4SCN (in dichloromethane) to give [Fe2Cp2(kN-NCO)(CO)(μ-CO){μ-CN(Me)(R)}] (R = Xyl, 2a; Me, 2b; Cy, 2c) and [Fe2Cp2(kN-NCS)(CO)(μ-CO){μ-CN(Me)(CH2Ph)}], 3 in 67–81% yields via substitution of the acetonitrile ligand. The reaction of [1aNCMe–1cNCMe]CF3SO3 with KSeCN in THF at reflux temperature led to the cyanide complexes [Fe2Cp2(CN)(CO)(μ-CO){μ-CNMe(R)}], 6a–c (45–67%). When the reaction of [1aNCMe]CF3SO3 with KSeCN was performed in acetone at room temperature, subsequent careful chromatography allowed the separation of moderate amounts of [Fe2Cp2(kSe-SeCN)(CO)(μ-CO){μ-CN(Me)(Xyl)}], 4a, and [Fe2Cp2(kN-NCSe)(CO)(μ-CO){μ-CN(Me)(Xyl)}], 5a. All products were fully characterized by elemental analysis, IR, and multinuclear NMR spectroscopy; moreover, the molecular structure of trans-6b was ascertained by single crystal X-ray diffraction. DFT calculations were carried out to shed light on the coordination mode and stability of the {NCSe-} fragment.
Collapse
Affiliation(s)
- Giulio Bresciani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Marco Bortoluzzi
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
- Department of Molecular Science and Nanosystems, University of Venezia “Ca’ Foscari”, Via Torino 155, I-30170 Mestre, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
7
|
Chen Z, Li M, Gu Q, Peng X, Qiu W, Xie W, Liu D, Jiao Y, Liu K, Zhou J, Su S. Highly Efficient Purely Organic Phosphorescence Light-Emitting Diodes Employing a Donor-Acceptor Skeleton with a Phenoxaselenine Donor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207003. [PMID: 36806703 PMCID: PMC10131844 DOI: 10.1002/advs.202207003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Indexed: 06/18/2023]
Abstract
Purely organic room-temperature phosphorescence (RTP) materials generally exhibit low phosphorescence quantum yield (ϕP ) and long phosphorescence lifetime (τP ) due to the theoretically spin-forbidden triplet state. Herein, by introducing a donor-acceptor (D-A) skeleton with a phenoxaselenine donor, three nonaromatic amine donor containing compounds with high ϕP and short τP in amorphous films are developed. Besides the enhanced spin-orbit coupling (SOC) by the heavy-atom effect of selenium, the D-A skeleton which facilitates orbital angular momentum change can further boost SOC, and severe nonradiative energy dissipation is also suppressed by the rigid molecular structure. Consequently, a record-high external quantum efficiency of 19.5% are achieved for the RTP organic light-emitting diode (OLED) based on 2-(phenoxaselenin-3-yl)-4,6-diphenyl-1,3,5-triazine (PXSeDRZ). Moreover, voltage-dependent color-tunable emission and single-molecule white emission are also realized. These results shed light on the broad prospects of purely organic phosphorescence materials as highly efficient OLED emitters especially for potential charming lighting applications.
Collapse
Affiliation(s)
- Zijian Chen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| | - Mengke Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| | - Qing Gu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| | - Xiaomei Peng
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| | - Weidong Qiu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| | - Wentao Xie
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| | - Yihang Jiao
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| | - Kunkun Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyWushan Road 381, Tianhe DistrictGuangzhouGuangdong Province510640P. R. China
| |
Collapse
|
8
|
He WB, Tang LL, Jiang J, Li X, Xu X, Yang TB, He WM. Paired Electrolysis Enabled Cyanation of Diaryl Diselenides with KSCN Leading to Aryl Selenocyanates. Molecules 2023; 28:molecules28031397. [PMID: 36771059 PMCID: PMC9919590 DOI: 10.3390/molecules28031397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The first example of paired electrolysis-enabled cyanation of diaryl diselenides, with KSCN as the green cyanating agent, has been developed. A broad range of aryl selenocyanates can be efficiently synthesized under chemical-oxidant- and additive-free, energy-saving and mild conditions.
Collapse
Affiliation(s)
- Wei-Bao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Luo-Lin Tang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xinhua Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Correspondence: (X.X.); (W.-M.H.)
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Correspondence: (X.X.); (W.-M.H.)
| |
Collapse
|
9
|
Xu-Xu QF, Nishii Y, Miura M. Synthesis of Diarylselenides through Rh-Catalyzed Direct Diarylation of Elemental Selenium with Benzamides. J Org Chem 2022; 87:16887-16894. [DOI: 10.1021/acs.joc.2c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Qing-Feng Xu-Xu
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Chen CL, Li JC, Liu MC, Zhou YB, Wu HY. Metal-Free Synthesis of Diselenides and Ditellurides by using TMSCN. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Alfuth J, Jeannin O, Fourmigué M. Topochemical, Single-Crystal-to-Single-Crystal [2+2] Photocycloadditions Driven by Chalcogen-Bonding Interactions. Angew Chem Int Ed Engl 2022; 61:e202206249. [PMID: 35797220 PMCID: PMC9546344 DOI: 10.1002/anie.202206249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/04/2022]
Abstract
The face-to-face association of (E)-1,2-di(4-pyridyl)ethylene (bpen) molecules into rectangular motifs stabilized for the first time by chalcogen bonding (ChB) interactions is shown to provide photoreactive systems leading to cyclobutane formation through single-crystal-to-single-crystal [2+2] photodimerizations. The chelating chalcogen bond donors are based on original aromatic, ortho-substituted bis(selenocyanato)benzene derivatives 1-3, prepared from ortho-diboronic acid bis(pinacol) ester precursors and SeO2 and malononitrile in 75-90 % yield. The very short intramolecular Se⋅⋅⋅Se distance in 1-3 (3.22-3.24 Å), a consequence of a strong intramolecular ChB interaction, expands to 3.52-3.54 Å in the chalcogen-bonded adducts with bpen, a distance (<4 Å) well adapted to the face-to-face association of the bpen molecules into the reactive position toward photochemical dimerization.
Collapse
Affiliation(s)
- Jan Alfuth
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), 35000, Rennes, France
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Olivier Jeannin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), 35000, Rennes, France
| | - Marc Fourmigué
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), 35000, Rennes, France
| |
Collapse
|
12
|
Alfuth J, Jeannin O, Fourmigue M. Topochemical, Single‐Crystal‐to‐Single‐Crystal [2+2] Photocycloadditions Driven by Chalcogen‐Bonding Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Alfuth
- Gdańsk University of Technology: Politechnika Gdanska Organic chemistry Gdansk POLAND
| | | | - Marc Fourmigue
- UMR 6226 CNRS-Universite Rennes1 Institut des Sciences Chimiques de Rennes Campus de BeaulieuBatiment 10C 35042 Rennes FRANCE
| |
Collapse
|
13
|
Karmaker PG, huo F. Organic Selenocyanates: Rapid Advancements and Applications in the Field of Organic Chemistry. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pran Gopal Karmaker
- Neijiang Normal University Chemistry & Chemical Engineering 705#, Dongtong Road, Neijiang, China, 641100Neijiang Normal University 641100 Neijiang CHINA
| | - feng huo
- Neijiang Normal University Chemistry Dongtong Rood #705 641100 Neijiang CHINA
| |
Collapse
|
14
|
Guo T, Li Z, Bi L, Fan L, Zhang P. Recent advances in organic synthesis applying elemental selenium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Ma Y, Liu M, Zhou Y, Wu H. Synthesis of Organoselenium Compounds with Elemental Selenium. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yang‐Tong Ma
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Miao‐Chang Liu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Yun‐Bing Zhou
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Hua‐Yue Wu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
16
|
Aganda KCC, Lee A. Synthesis of Selenaheterocycles via Visible‐Light‐Mediated Radical Cyclization. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kim Christopher C. Aganda
- Department of Energy Science and Technology Myongji University Yongin 17058 Republic of Korea
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Anna Lee
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
17
|
Sacramento M, Costa GP, Barcellos AM, Perin G, Lenardão EJ, Alves D. Transition-metal-free C-S, C-Se, and C-Te Bond Formation from Organoboron Compounds. CHEM REC 2021; 21:2855-2879. [PMID: 33735500 DOI: 10.1002/tcr.202100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
The present review describes the successful application of organoboron compounds in transition-metal-free C-S, C-Se, and C-Te bond formations. We presented studies regarding these C-Chalcogen bond formations using organoboron reagents, such as boronic acids, boronic esters, borate anions, and several sources of chalcogen atoms/moieties. Moreover, a broad range of transition-metal-free approaches to synthesize sulfides, selenides, and tellurides were described using conventional heating methods, which are sometimes green since they use green solvents, safe reagents, among others. Furthermore, protocols using alternative energy sources, including ultrasound, microwave irradiation, photocatalysis, and electrolytic processes, were also shown to be suitable. These protocols were applied to prepare a broad scope of functionalized chalcogenides with high molecular diversity. These studies and their proposed mechanisms were also reported herein in addition to the reuse of reaction promoters.
Collapse
Affiliation(s)
- Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gabriel P Costa
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|