1
|
Vranic S, Kurapati R, Kostarelos K, Bianco A. Biological and environmental degradation of two-dimensional materials. Nat Rev Chem 2025; 9:173-184. [PMID: 39794485 DOI: 10.1038/s41570-024-00680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/13/2025]
Abstract
As the use of two-dimensional materials continues to grow, so too does the need to understand the environmental and biological impact of such materials. Degradation is a critical step in the life cycle of any material, but the majority of such knowledge is obtained from test tube and in vitro studies. Therefore, there remains a gap in understanding the degradability of two-dimensional materials in complex systems (in vivo) and in different ambient environments. In this Review, we highlight the need for more data-driven studies on the degradation of two-dimensional materials, including their kinetics, by-products, stability and possible downstream effects. Although challenging, building an understanding of the degradation profiles of different advanced materials in various environments at the chemical and molecular level is essential.
Collapse
Affiliation(s)
- Sandra Vranic
- Nano-Cell Biology Lab, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Kostas Kostarelos
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Nanomedicine Lab, Catalan Institute of Nanoscience and Nanotechnology (ICN2) Campus UAB Bellaterra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France.
| |
Collapse
|
2
|
Georgakilas VI. Water as Solvent for the Dispersion of 2D Nanostructured Materials. Chemphyschem 2025; 26:e202400904. [PMID: 39436895 DOI: 10.1002/cphc.202400904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
The development of large number of two-dimensional (2D) nanostructured materials that followed the success of graphene and the need for their handling and manipulation e. g., in inks, brought to the fore the study of solvents and substances that contribute to the stabilization of 2D nanomaterials in the liquid phase. The successful dispersion of 2D materials in solvents is combined with one of the most widespread preparation methods, that of liquid phase exfoliation. In this article, a review for the role of water in the preparation of different 2D nanostructures and their stable dispersions in the liquid phase is discussed. The use of water as a solvent or dispersant is instrumental in promoting materials with an ecological footprint, low cost, and sustainability.
Collapse
Affiliation(s)
- Vasilios I Georgakilas
- Department of Materials Science, University of Patras, University Campus, 20504, Rio Patra, Greece
| |
Collapse
|
3
|
Zahra T, Javeria U, Jamal H, Baig MM, Akhtar F, Kamran U. A review of biocompatible polymer-functionalized two-dimensional materials: Emerging contenders for biosensors and bioelectronics applications. Anal Chim Acta 2024; 1316:342880. [PMID: 38969417 DOI: 10.1016/j.aca.2024.342880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Bioelectronics, a field pivotal in monitoring and stimulating biological processes, demands innovative nanomaterials as detection platforms. Two-dimensional (2D) materials, with their thin structures and exceptional physicochemical properties, have emerged as critical substances in this research. However, these materials face challenges in biomedical applications due to issues related to their biological compatibility, adaptability, functionality, and nano-bio surface characteristics. This review examines surface modifications using covalent and non-covalent-based polymer-functionalization strategies to overcome these limitations by enhancing the biological compatibility, adaptability, and functionality of 2D nanomaterials. These surface modifications aim to create stable and long-lasting therapeutic effects, significantly paving the way for the practical application of polymer-functionalized 2D materials in biosensors and bioelectronics. The review paper critically summarizes the surface functionalization of 2D nanomaterials with biocompatible polymers, including g-C3N4, graphene family, MXene, BP, MOF, and TMDCs, highlighting their current state, physicochemical structures, synthesis methods, material characteristics, and applications in biosensors and bioelectronics. The paper concludes with a discussion of prospects, challenges, and numerous opportunities in the evolving field of bioelectronics.
Collapse
Affiliation(s)
- Tahreem Zahra
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Umme Javeria
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Hasan Jamal
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Mirza Mahmood Baig
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan; Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden.
| | - Urooj Kamran
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden; Institute of Advanced Machinery Design Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
4
|
He Y, Andrade AF, Ménard-Moyon C, Bianco A. Biocompatible 2D Materials via Liquid Phase Exfoliation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310999. [PMID: 38457626 DOI: 10.1002/adma.202310999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/17/2024] [Indexed: 03/10/2024]
Abstract
2D materials (2DMs), such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have been proposed for different types of bioapplications, owing to their unique physicochemical, electrical, optical, and mechanical properties. Liquid phase exfoliation (LPE), as one of the most effective up-scalable and size-controllable methods, is becoming the standard process to produce high quantities of various 2DM types as it can benefit from the use of green and biocompatible conditions. The resulting exfoliated layered materials have garnered significant attention because of their biocompatibility and their potential use in biomedicine as new multimodal therapeutics, antimicrobials, and biosensors. This review focuses on the production of LPE-assisted 2DMs in aqueous solutions with or without the aid of surfactants, bioactive, or non-natural molecules, providing insights into the possibilities of applications of such materials in the biological and biomedical fields.
Collapse
Affiliation(s)
- Yilin He
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Andrés Felipe Andrade
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
5
|
Lobo K, Gangaiah VK, Alex C, John NS, Ramakrishna Matte HSS. Spontaneous Decoration of Ultrasmall Pt Nanoparticles on Size-Separated MoS 2 Nanosheets. Chemistry 2023; 29:e202301596. [PMID: 37497808 DOI: 10.1002/chem.202301596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Liquid exfoliation can be considered as a viable approach for the scalable production of 2D materials due to its various benefits, although the polydispersity in the obtained nanosheet size hinders their straightforward incorporation. Size-separation can help alleviate these concerns, however a correlation between nanosheet size and property needs to be established to bring about size-specific applicability. Herein, size-selected aqueous nanosheet dispersions have been obtained via centrifugation-based protocols, and their chemical activity in the spontaneous reduction of chloroplatinic acid is investigated. Growth of ultrasmall Pt nanoparticles was achieved on nanosheet surfaces without a need for reducing agents, and stark differences in the nanoparticle coverage were observed as a function of nanosheet size. Defects in the nanosheets were probed via Raman spectroscopy, and correlated to the observed size-activity. Additionally, the effect of reaction temperature during synthesis was investigated. The electrochemical activity of the ultrasmall Pt nanoparticle decorated MoS2 nanosheets was evaluated for the hydrogen evolution reaction, and enhancement in performance was observed with nanosheet size, and nanoparticle decoration density. These findings shine light on the significance of nanosheet size in controlling spontaneous reduction reactions, and provide a deeper insight to intrinsic properties of liquid exfoliated nanosheets.
Collapse
Affiliation(s)
- Kenneth Lobo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Arkavathi campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
- Centre for Nano and Soft Matter Sciences, Arkavathi campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
- Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Vijaya Kumar Gangaiah
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Arkavathi campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
- Centre for Nano and Soft Matter Sciences, Arkavathi campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| | - Chandraraj Alex
- Centre for Nano and Soft Matter Sciences, Arkavathi campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| | - Neena S John
- Centre for Nano and Soft Matter Sciences, Arkavathi campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| | - H S S Ramakrishna Matte
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Arkavathi campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
- Centre for Nano and Soft Matter Sciences, Arkavathi campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| |
Collapse
|
6
|
Sahoo P, Chaturvedi A, Ramamurty U, Matte HSSR. Nanomechanical study of aqueous-processed h-BN reinforced PVA composites. NANOTECHNOLOGY 2022; 34:095703. [PMID: 36594874 DOI: 10.1088/1361-6528/aca544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Hexagonal boron nitride (h-BN) as a filler has significantly improved the mechanical properties of various polymers composites. Among them, polyvinyl alcohol (PVA) is particularly important for its wide range of industrial applications and biocompatibility nature. However, preparing a homogenous composite of h-BN and PVA in water is troublesome as the aqueous processing of h-BN without any additives is challenging. In this context, a pre-processing technique is used to produce an additive-free aqueous dispersion of h-BN. The uniformly dispersed composites are then prepared with different concentrations of h-BN. Free-standing thin films are fabricated using the doctor blade technique, and nanoindentation is employed to understand their deformation behaviour at smaller length scale for better understanding of micro-mechanism involved. Reduced elastic modulus and hardness of 10 wt% h-BN/PVA composite film are enhanced by ∼93% and ∼159%, respectively, compared to pristine PVA. Frequency sweep dynamic mechanical analysis is performed between 1 and 50 Hz, and the elastic properties of composite materials are found to improve significantly upon addition of h-BN nanosheets. Besides, the impact of h-BN incorporation in stress relaxation behaviour and hardness depth profiling are also investigated. The observed improvement in mechanical properties of the composites may be attributed to the uniform distribution of the nanosheets and the strong interfacial interaction between h-BN and PVA, which ensures efficient mechanical stress transfer at the interface.
Collapse
Affiliation(s)
- Priyabrata Sahoo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Arkavathi, Shivanapura, Bengaluru-562 162, India
- Manipal Academy of Higher Education, Manipal-576 104, India
| | - Abhishek Chaturvedi
- Micro and Nano Characterization Facility (MNCF), Centre for Nano Science & Engineering (CeNSE), Indian Institute of Science, Bengaluru-560 012, India
| | - Upadrasta Ramamurty
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Singapore 138634, Singapore
| | - H S S Ramakrishna Matte
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Arkavathi, Shivanapura, Bengaluru-562 162, India
| |
Collapse
|
7
|
Spontaneous formation of gold nanoparticles on MoS2 nanosheets and its impact on solution-processed optoelectronic devices. iScience 2022; 25:104120. [PMID: 35391825 PMCID: PMC8980758 DOI: 10.1016/j.isci.2022.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding size-dependent properties of 2D materials is crucial for their optimized performance when incorporated through solution routes. In this work, the chemical nature of MoS2 as a function of nanosheet size is investigated through the spontaneous reduction of chloroauric acid. Microscopy studies suggest higher gold nanoparticle decoration density in smaller nanosheet sizes, resulting from higher extent of reduction. Further corroboration through surface-enhanced Raman scattering using the gold-decorated MoS2 nanosheets as substrates exhibited an enhancement factor of 1.55 × 106 for smaller nanosheets which is 7-fold higher as compared to larger nanosheets. These plasmonic-semiconductor hybrids are utilized for photodetection, where decoration is found to impact the photoresponse of smaller nanosheets the most, and is optimized to achieve responsivity of 367.5 mAW-1 and response times of ∼17 ms. The simplistic modification via solution routes and its impact on optoelectronic properties provides an enabling platform for 2D materials-based applications. Reducing agent-free Au nanoparticle decoration on aqueously dispersed 2H-MoS2. Control on Au nanoparticle decoration density through nanosheet size-selection. SERS as a probe for determining the decoration density along with microscopy. Enhanced photodetection by spontaneous modification with Au on MoS2 films.
Collapse
|
8
|
Sahoo P, Gupta B, Chandra Sahoo R, Vankayala K, Ramakrishna Matte HSS. Solution Processing of Topochemically Converted Layered WO 3 for Multifunctional Applications. Chemistry 2021; 27:11326-11334. [PMID: 34019316 DOI: 10.1002/chem.202100751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/10/2022]
Abstract
Solution processing of nanomaterials is a promising technique for use in various applications owing to its simplicity and scalability. However, the studies on liquid-phase exfoliation (LPE) of tungsten oxide (WO3 ) are limited, unlike others, by a lack of commercial availability of bulk WO3 with layered structures. Herein, a one-step topochemical synthesis approach to obtain bulk layered WO3 from commercially available layered tungsten disulfide (WS2 ) by optimizing various parameters like reaction time and temperature is reported. Detailed microscopic and spectroscopic techniques confirmed the conversion process. Further, LPE was carried out on topochemically converted bulk layered WO3 in 22 different solvents; among the solvents studied, the propan-2-ol/water (1 : 1) co-solvent system appeared to be the best. This indicates that the possible values of surface tension and Hansen solubility parameters for bulk WO3 could be close to that of the co-solvent system. The obtained WO3 dispersions in a low-boiling-point solvent enable thin films of various thickness to be fabricated by using spray coating. The obtained thin films were used as active materials in supercapacitors without any conductive additives/binders and exhibited an areal capacitance of 31.7 mF cm-2 at 5 mV s-1 . Photo-electrochemical measurements revealed that these thin films can also be used as photoanodes for photo-electrochemical water oxidation.
Collapse
Affiliation(s)
- Priyabrata Sahoo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences (CeNS), Arkavathi Campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bangalore, 562162, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Bikesh Gupta
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences (CeNS), Arkavathi Campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bangalore, 562162, India
| | - Ramesh Chandra Sahoo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences (CeNS), Arkavathi Campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bangalore, 562162, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kiran Vankayala
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, K. K. Birla Goa campus, Goa, 403726, India
| | - H S S Ramakrishna Matte
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences (CeNS), Arkavathi Campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bangalore, 562162, India
| |
Collapse
|