1
|
Armbruster C, Sellin M, Seiler M, Würz T, Oesten F, Schmucker M, Sterbak T, Fischer J, Radtke V, Hunger J, Krossing I. Pushing redox potentials to highly positive values using inert fluorobenzenes and weakly coordinating anions. Nat Commun 2024; 15:6721. [PMID: 39112470 PMCID: PMC11306567 DOI: 10.1038/s41467-024-50669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
While the development of weakly coordinating anions (WCAs) received much attention, the progress on weakly coordinating and inert solvents almost stagnated. Here we study the effect of strategic F-substitution on the solvent properties of fluorobenzenes C6FxH6-x (xFB, x = 1-5). Asymmetric fluorination leads to dielectric constants as high as 22.1 for 3FB that exceeds acetone (20.7). Combined with the WCAs [Al(ORF)4]- or [(FRO)3Al-F-Al(ORF)3]- (RF = C(CF3)3), the xFB solvents push the potentials of Ag+ and NO+ ions to +1.50/+1.52 V vs. Fc+/Fc. The xFB/WCA-system has electrochemical xFB stability windows that exceed 5 V for all xFBs with positive upper limits between +1.82 V (1FB) and +2.67 V (5FB) vs. Fc+/Fc. High-level ab initio calculations with inclusion of solvation energies show that these high potentials result from weak interactions of the ions with solvent and counterion. To access the available positive xFB potential range with stable reagents, the innocent deelectronator salts [anthraceneF]+∙[WCA]- and [phenanthreneF]+∙[WCA]- with potentials of +1.47 and +1.89 V vs. Fc+/Fc are introduced.
Collapse
Affiliation(s)
- Christian Armbruster
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Malte Sellin
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Matthis Seiler
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Tanja Würz
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Friederike Oesten
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Maximilian Schmucker
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Tabea Sterbak
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Julia Fischer
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Valentin Radtke
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Johannes Hunger
- Molecular Spectroscopy Department, Max-Planck-Institut for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Zimmermann L, Riesinger C, Scheer M. Potential of Mixed Dipnictogen Molybdenum Complexes in the Self-Assembly of Thallium Coordination Compounds. Inorg Chem 2024; 63:11168-11175. [PMID: 38842464 PMCID: PMC11186011 DOI: 10.1021/acs.inorgchem.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The coordination chemistry of the homo- and heterodipnictogen tetrahedrane complexes [{CpMo(CO)2}2(μ,η2:2-EE')] (E, E' = P, As, Sb) (A-F) toward Tl[BArF24] ([BArF24]- = [B(3,5-C6H3(CF3)2)4]-) was studied. Controlled by the used tetrahedranes A-F, and thus depending on the respective pnictogen atoms, the monomers [Tl(η2-A)][BArF24] ([A]Tl) and [Tl(η2-B)][BArF24] ([B]Tl), the double substituted [Tl(η1-C)2][BArF24] ([C]2Tl) or the even higher aggregated compounds [Tl2(η2-D)3(μ,η2:1-D)(μ,η1:1-D)][BArF24]2 ([D]5Tl2), [Tl2(η2-E)2(μ,η2:1-E)3] [BArF24]2 ([E]5Tl2) and [Tl2(η2-F)3(μ,η2:1-F)3][BArF24]2 ([F]6Tl2) were obtained. Utilization of [BArF24]- promises additional stabilization of TlI via η6-coordination of two of its aryl rings as found in compounds [A]Tl, [B]Tl and [C]2Tl. Within the series of reactivity of A-F, the heavier congeners D, E and F tend to form larger aggregates in which σ(E-E') bond contributions to the coordination behavior were observed. Interatomic distances suggest the presence of Tl···Tl interactions in [E]5Tl2 and [F]6Tl2. The features of the respective coordination compounds were studied in the solid-state as well as in solution. For the latter at least a partial dissociation of the assemblies in solution was indicated. The isolated solid-state aggregates are the first examples of heterodipnictogen units as ligands in self-assembled TlI-based coordination compounds.
Collapse
Affiliation(s)
- Lisa Zimmermann
- Institute of Inorganic Chemistry University
of Regensburg 93040 Regensburg, Germany
| | - Christoph Riesinger
- Institute of Inorganic Chemistry University
of Regensburg 93040 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry University
of Regensburg 93040 Regensburg, Germany
| |
Collapse
|
3
|
Hsu MC, Lin RY, Sun TY, Huang YX, Li MS, Li YH, Chen HL, Shieh M. Inorganic-organic hybrid Cu-dipyridyl semiconducting polymers based on the redox-active cluster [SFe 3(CO) 9] 2-: filling the gap in iron carbonyl chalcogenide polymers. Dalton Trans 2024; 53:7303-7314. [PMID: 38587832 DOI: 10.1039/d4dt00254g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The construction of sulfur-incorporated cluster-based coordination polymers was limited and underexplored due to the lack of efficient synthetic routes. Herein, we report facile mechanochemical ways toward a new series of SFe3(CO)9-based dipyridyl-Cu polymers by three-component reactions of [Et4N]2[SFe3(CO)9] ([Et4N]2[1]) and [Cu(MeCN)4][BF4] with conjugated or conjugation-interrupted dipyridyl ligands, 1,2-bis(4-pyridyl)ethylene (bpee), 1,2-bis(4-pyridyl)ethane (bpea), 4,4'-dipyridyl (dpy), or 1,3-bis(4-pyridyl)propane (bpp), respectively. X-ray analysis showed that bpee-containing 2D polymers demonstrated unique SFe3(CO)9 cluster-armed and cluster-one-armed coordination modes via the hypervalent μ5-S atom. These S-Fe-Cu polymers could undergo flexible structural transformations with the change of cluster bonding modes by grinding with stoichiometric amounts of dipyridyls or 1/[Cu(MeCN)4]+. They exhibited semiconducting behaviors with low energy gaps of 1.55-1.79 eV and good electrical conductivities of 3.26 × 10-8-1.48 × 10-6 S cm-1, tuned by the SFe3(CO)9 cluster bonding modes accompanied by secondary interactions in the solid state. The electron transport efficiency of these polymers was further elucidated by solid-state packing, X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), density of states (DOS), and crystal orbital Hamilton population (COHP) analysis. Finally, the solid-state electrochemistry of these polymers demonstrated redox-active behaviors with cathodically-shifted patterns compared to that of [Et4N]2[1], showing that their efficient electron communication was effectively enhanced by introducing 1 and dipyridyls as hybrid ligands into Cu+-containing networks.
Collapse
Affiliation(s)
- Ming-Chi Hsu
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Ru Yan Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Tzu-Yen Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Yu-Xin Huang
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Min-Sian Li
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Yu-Huei Li
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Hui-Lung Chen
- Department of Chemistry and Institute of Applied Chemistry, Chinese Culture University, Taipei 111396, Taiwan, Republic of China.
| | - Minghuey Shieh
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| |
Collapse
|
4
|
Elsayed Moussa M, Shelyganov PA, Seidl M, Zimmermann L, Scheer M. Supramolecular compounds assembled from the heteroleptic tetrahedral complex [{CpMo(CO) 2} 2(μ,η 2-AsSb)] and metal salts. Chem Commun (Camb) 2024; 60:4703-4706. [PMID: 38596847 DOI: 10.1039/d4cc01001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The reaction of the tetrahedral complex [{CpMo(CO)2}2(μ,η2-AsSb)] with CuI and AgI salts is presented which gives unprecedented neutral and cationic supramolecular aggregates featuring mixed As/Sb-donor molecules as ligands/linkers between metal ions.
Collapse
Affiliation(s)
- Mehdi Elsayed Moussa
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| | - Pavel A Shelyganov
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| | - Michael Seidl
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
- Institut für Allgemeine, Anorganische und Theoretische Chemie Universität Innsbruck, Centrum für Chemie und Biomedizin (CCB), Innrain 80-82, 6020 Innsbruck, Austria
| | - Lisa Zimmermann
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
5
|
Shelyganov PA, Elsayed Moussa M, Seidl M, Zimmermann L, Menezes da Silva W, Scheer M. Novel synthetic route towards heteroleptic pnictogen-rich organometallic-inorganic coordination compounds. Dalton Trans 2023. [PMID: 38031896 DOI: 10.1039/d3dt03490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The reaction of the Ag(I) dimer [Ag2(η2-A)2(μ,η1:η1-A)2][TEF]2 (A = [{CpMo(CO)2}2(μ,η2-P2)]) possessing labile η2-coordinated P2 ligands with the organometallic dipnictogen compounds [{CpMo(CO)2}2(μ,η2-EE')] (E = E' = As, Sb; E = P, E' = As, Sb) represents a facile synthetic route towards unprecedented heteroleptic pnictogen-rich supramolecular complexes. This method can also be extended to the analogous Cu(I) dimer and is studied by DFT computations.
Collapse
Affiliation(s)
- Pavel A Shelyganov
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| | - Mehdi Elsayed Moussa
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| | - Michael Seidl
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Centrum für Chemie und Biomedizin (CCB), Innrain 80-82, 6020 Innsbruck, Austria
| | - Lisa Zimmermann
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| | | | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
6
|
Shelyganov PA, Elsayed Moussa M, Seidl M, Scheer M. Diantimony Complexes [Cp R 2 Mo 2 (CO) 4 (μ,η 2 -Sb 2 )] (Cp R =C 5 H 5 , C 5 H 4 t Bu) as Unexpected Ligands Stabilizing Silver(I) n (n=1-4) Monomers, Dimers and Chains. Angew Chem Int Ed Engl 2023; 62:e202215650. [PMID: 36469453 PMCID: PMC10107263 DOI: 10.1002/anie.202215650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Synthesis and reactivity of transition metal compounds bearing "naked" pnictogen atoms is an active research area with remarkable bonding patterns observed in the formed compounds. Within this field, intense investigations on the coordination behavior of complexes possessing Pn and Asn (2≤n≤5) moieties have been conducted. However, studies on heavier analogues have been ignored so far due to arduous challenges related to low yields and moderate air stability. Herein, we present the first in-depth study addressing the reactivity of organometallic complexes containing Sb-donor atoms with several AgI salts. These reactions afforded twelve unprecedented aggregates as monomers, dimers as well as three- and four-membered chains of AgI ions claimed in the literature to be inaccessible. Interatomic distances as well as computational evidence obtained with help of several different methods suggest the presence of Ag⋅⋅⋅Ag interactions in all complexes containing more than one AgI ion.
Collapse
Affiliation(s)
- Pavel A. Shelyganov
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | | | - Michael Seidl
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
7
|
Elsayed Moussa M, Kahoun T, Ackermann MT, Seidl M, Bodensteiner M, Timoshkin AY, Scheer M. Coordination Chemistry of Anionic Pnictogenylborane Compounds. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mehdi Elsayed Moussa
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Tobias Kahoun
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Matthias T. Ackermann
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Seidl
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Bodensteiner
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Alexey Y. Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034 St. Petersburg, Russia
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
8
|
Elsayed Moussa M, Shelyganov PA, Seidl M, Peresypkina E, Berg N, Gschwind RM, Balázs G, Schiller J, Scheer M. Mixed Organometallic-Organic Hybrid Assemblies Based on the Diarsene Complex [Cp 2 Mo 2 (CO) 4 (μ,η 2 -As 2 )], Ag I Salts and N-Donor Organic Molecules. Chemistry 2021; 27:5028-5034. [PMID: 33400327 PMCID: PMC7986401 DOI: 10.1002/chem.202100027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 02/04/2023]
Abstract
The reaction of the organometallic diarsene complex [Cp2 Mo2 (CO)4 (η2 -As2 )] (1) with Ag[Al{OC(CF3 )3 }4 ] (Ag[TEF]) yielded the AgI monomer [Ag(η2 -1)3 ][TEF] (2). This compound exhibits dynamic behavior in solution, which allows directed selective synthesis of unprecedented organometallic-organic hybrid assemblies upon its reaction with N-donor organic molecules by a stepwise pathway, which is supported by DFT calculations. Accordingly, the reaction of 2 with 2,2'-bipyrimidine (L1) yielded the dicationic molecular compound [{(η2 -1)2 Ag}2 (μ-L1)][TEF]2 (3) or the 1D polymer [{(η2 -1)Ag}(μ-L1)]n [TEF]n (4) depending on the ratio of the reactants. However, its reactions with the pyridine-based linkers 4,4'-bipyridine (L2), 1,2-bis(4-pyridyl)ethylene (L3) and 1,2-bis(4-pyridyl)ethyne (L4) allowed the formation of the 2D polymers [{(η2 -1)Ag}2 (μ-Lx)3 ]n [TEF]2n [Lx=L2 (5), L3 (6), L4 (7), respectively]. Additionally, this concept was extended to step-by-step one-pot reactions of 1, [Ag(CH3 CN)3 ][Al{OC(CF3 )2 (CCl3 )}4 ] ([Ag(CH3 CN)3 ][TEFCl ]) and linkers L2-L4 to produce the 2D polymers [{(η2 -1)Ag}2 (μ,Lx)3 ]n [TEFCl ]2n [Lx=L2 (8), L3 (9), L4 (10), respectively].
Collapse
Affiliation(s)
| | - Pavel A. Shelyganov
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Michael Seidl
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Eugenia Peresypkina
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Nele Berg
- Institut für Organische ChemieUniversität Regensburg93040RegensburgGermany
| | - Ruth M. Gschwind
- Institut für Organische ChemieUniversität Regensburg93040RegensburgGermany
| | - Gábor Balázs
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Jana Schiller
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Manfred Scheer
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| |
Collapse
|