1
|
Chen TH, Ando A, Shamoto O, Fuse S. Effect of Brønsted Acids on the Activation of Mixed Anhydride/Mixed Carbonic Anhydride and C-Terminal-Free N-Methylated Peptide Synthesis in a Micro-Flow Reactor. Chemistry 2024; 30:e202401402. [PMID: 38719730 DOI: 10.1002/chem.202401402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 06/19/2024]
Abstract
Amidations employing mixed (carbonic) anhydrides have long been favoured in peptide synthesis because of their cost-effectiveness and less waste generation. Despite their long history, no study has compared the effects of additives on the activation of mixed anhydrides and carbonic anhydrides. In this study, we investigated the amidation of mixed (carbonic) anhydride in the presence of a base and/or Brønsted acids. The use of NMI⋅HCl significantly improved the conversion of the mixed carbonic anhydride, while expediting nucleophilic attacks on the desired carbonyl group. In contrast, in the case of mixed anhydrides, neither the conversion nor the desired nucleophilic attack improved significantly. We developed a C-terminus-free N-methylated peptide synthesis method using mixed carbonic anhydrides in a micro-flow reactor. Fourteen N-alkylated peptides were synthesized in moderate to high yields (55-99 %) without severe racemization (<1 %). Additionally, a significant enhancement in the amidation between mixed carbonic anhydrides and bis-TMS-protected N-methyl amino acids with the inclusion of NMI⋅HCl was observed for the first time. In addition, we observed unexpected C-terminal epimerization of the C-terminus-free N-methyl peptides.
Collapse
Affiliation(s)
- Ting-Ho Chen
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Akira Ando
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Otoka Shamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
2
|
Jakobsche CE, Xu M, MacArthur NS, Duong CM, Islam S, McElwee JP. Challenges and Strategies for Synthesizing Glutamyl Hydrazide Containing Peptides. Synlett 2022. [DOI: 10.1055/s-0042-1751397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractHerein, we detail several specific challenges that hinder the effective synthesis of glutamyl hydrazide containing peptides, and we describe a synthetic strategy to work around these challenges. Glutamyl hydrazide is an unnatural amino acid residue that bears an acyl hydrazide functional group on its side chain. This family of compounds has the potential to provide potent and selective inhibitor molecules for several families of enzymes. During peptide synthesis, however, these side chains—even in protected form—can derail the synthesis by initiating undesired side reactions. Avoiding these side reactions is critical for enabling effective access to this family of compounds.
Collapse
|
3
|
Masui H, Fuse S. Micro-Flow <i>N</i>-Acylation Using Highly Electrophilic Acyl Ammonium Cations for Peptide and Urethane-Protected <i>N</i>-Carboxyanhydride Syntheses. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Masui H, Fuse S. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
5
|
Liao J, Jia X, Wu F, Huang J, Shen G, You H, Chen FE. Rapid mild macrocyclization of depsipeptides under continuous flow: total syntheses of five cyclodepsipeptides. Org Chem Front 2022. [DOI: 10.1039/d2qo01577c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A systematic investigation of the flow macrocyclization approaches for five destruxin analogues natural products at three different cyclization point has been reported.
Collapse
Affiliation(s)
- Jingyuan Liao
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
| | - Xuelei Jia
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd, Guangdong, China
| | - Fusong Wu
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
| | - Junrong Huang
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
| | - Guifu Shen
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd, Guangdong, China
| | - Hengzhi You
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Guangdong, China
| | - Fen-Er Chen
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Guangdong, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Goel S, Khulbe M, Aggarwal A, Kathuria A. Recent advances in continuous flow synthesis of heterocycles. Mol Divers 2021; 26:2939-2948. [PMID: 34661798 DOI: 10.1007/s11030-021-10338-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
In the current scenario, flow chemistry is emerging as a significant technology in the field of organic synthesis. This miniaturized protocol including microreactors facilitates excellent heat transfer, low solvent wastage, lesser reaction time, a safer environment for reagent handling and appreciable yields of desired products. Thus, this "enabling technology" has a great scope in the synthesis and preparation of a variety of heterocycles that require toxic reagents as starting materials. This review discusses the recent advances (2020-2021) in continuous flow strategy for synthesis and derivatization of variety of heterocyclic entities, of different ring size, using different approaches. This also highlights the advantages of different combined techniques like Microwave assisted heating, electrochemical flow cell, LED light source, NMR and FT-IR analysis, etc., that enables utilization of various mechanisms and real-time monitoring of reactions leading to improved results.
Collapse
Affiliation(s)
- Shruti Goel
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Mihir Khulbe
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Anshul Aggarwal
- Department of Chemistry, IIT Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Abha Kathuria
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
7
|
Bonner A, Loftus A, Padgham AC, Baumann M. Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Org Biomol Chem 2021; 19:7737-7753. [PMID: 34549240 DOI: 10.1039/d1ob01452h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Continuous flow technology has played an undeniable role in enabling modern chemical synthesis, whereby a myriad of reactions can now be performed with greater efficiency, safety and control. As flow chemistry furthermore delivers more sustainable and readily scalable routes to important target structures a growing number of industrial applications are being reported. In this review we highlight the impact of flow chemistry on revitalising important chemical reactions that were either forgotten soon after their initial report as necessary improvements were not realised due to a lack of available technology, or forbidden due to unacceptable safety concerns relating to the experimental procedure. In both cases flow processing in combination with further reaction optimisation has rendered a powerful set of tools that make such transformations not only highly efficient but moreover very desirable due to a more streamlined construction of desired scaffolds. This short review highlights important contributions from academic and industrial laboratories predominantly from the last 5 years allowing the reader to gain an appreciation of the impact of flow chemistry.
Collapse
Affiliation(s)
- Arlene Bonner
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Aisling Loftus
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Alex C Padgham
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| |
Collapse
|