1
|
Li M, Tian G, Jiang X, Qi D, Yang B, Li Y. An Autonomously Liquefied Hydrogel Adhesive for Programmable Bioelectronic Interface. Angew Chem Int Ed Engl 2025:e202503010. [PMID: 40257174 DOI: 10.1002/anie.202503010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Hydrogel adhesives have many important applications in the fields of drug delivery, regenerative medicine, and bioelectronics. The detachment of hydrogel adhesives under the benign conditions is vital to the definitive surgical repair and implanted devices. Although stimuli-mediated detachment of hydrogel adhesives has been achieved, it is still a grand challenge to develop a transient adhesive with programmable adhesion and autonomous detachment from the substrate, especially the hairy skins. Here, we report a transient hydrogel adhesive driven by antagonistic enzyme reaction networks for programmable bioelectronic interface. The transient hydrogel shows tunable mechanical properties, adjustable adhesive strength, and autonomous sol-gel-sol transition with a programmable lifetime. Moreover, the transient hydrogel adhesive enables conformable and stable adhesion to various materials. In particular, the bioelectrode coated by the transient hydrogel adhesive allows to record stable and high-quality electromyogram, electrocardiogram, and electroencephalogram signals directly on the hairy skins without hair shaving. Notably, the autonomous liquefication of the hydrogel adhesives enables the easy removal of bioelectrode from hairy skins after usage without any noticeable damages to the hairy skins and electrode. This work paves a new avenue in the innovative development of hydrogel adhesives for the conformable and detachable bioelectronic interface.
Collapse
Affiliation(s)
- Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Gongwei Tian
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou, 450000, P.R. China
| | - Xuemei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Dianpeng Qi
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou, 450000, P.R. China
- Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| |
Collapse
|
2
|
Haranal S, Ranganath VA, Maity I. Urease-coupled systems and materials: design strategies, scope and applications. J Mater Chem B 2025; 13:4252-4278. [PMID: 40066476 DOI: 10.1039/d4tb02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Synthetic systems have co-opted urease, a crucial enzyme serving many biological functions, to recapitulate complex biological features. Therefore, the urease-urea feedback reaction network (FCRN) is reciprocated with soft materials to induce various animate-like features, including self-regulation, error correction, and decision-making capabilities, that are processed through a variety of non-linear functions. Although free-urease-based homogeneous systems are capable of adhering to many non-linear characteristics, they lack the ability to showcase the diffusion-controlled spatiotemporal phenomena. Therefore, it demands urease immobilization, whereby a compartmentalized reaction hub can facilitate the interplay of FCRN with reaction diffusion to regulate the system's operation, allowing various non-linear responses and spatiotemporal self-organization. Indeed, the beneficial framework of urease-based commercial systems in modern technology necessitates the accessibility, reusability, and long-term stability of urease. Consequently, several techniques for urease immobilization merit attention. This review highlights the diverse covalent and non-covalent approaches for urease immobilization on different substrates and illustrates several chemical reactions and non-covalent interactions as tools for creating targeted systems and soft materials to realize many on-demand functions. We also emphasize how the advancement of systems chemistry has propelled research in soft materials to comprehend system-level applications by demonstrating several emerging non-linear functions with potent applications in many directions, including sensing, soft robotics, regulation of material properties and many more.
Collapse
Affiliation(s)
- Shashikumar Haranal
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore-562112, Karnataka, India.
| | - Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore-562112, Karnataka, India.
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore-562112, Karnataka, India.
| |
Collapse
|
3
|
Ballard-Kyle P, Hsieh I, Zhu H. Electrocatalytic CN Coupling: Advances in Urea Synthesis and Opportunities for Alternative Products. CHEMSUSCHEM 2025:e2402566. [PMID: 40079802 DOI: 10.1002/cssc.202402566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025]
Abstract
Urea is an essential fertilizer produced through the industrial synthesis of ammonia (NH3) via the Haber-Bosch process, which contributes ≈1.2% of global annual CO2 emissions. Electrocatalytic urea synthesis under ambient conditions via CN coupling from CO2 and nitrogen species such as nitrate (NO3 -), nitrite (NO2 -), nitric oxide (NO), and nitrogen gas (N2) has gained interest as a more sustainable route. However, challenges remain due to the unclear reaction pathways for urea formation, competing reactions, and the complexity of the resulting product matrix. This review highlights recent advances in catalyst design, urea quantification, and intermediate identification in the CN coupling reaction for electrocatalytic urea synthesis. Furthermore, this review explores future prospects for industrial CN coupling, considering potential nitrogen and carbon sources and examining alternative CN coupling products, such as amides and amines.
Collapse
Affiliation(s)
- Parker Ballard-Kyle
- Department of Chemistry, University of Virginia, 409 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Isabel Hsieh
- Department of Chemistry, University of Virginia, 409 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Huiyuan Zhu
- Department of Chemistry, University of Virginia, 409 McCormick Rd, Charlottesville, VA, 22904, USA
| |
Collapse
|
4
|
Li L, Zheng R, Sun R. Understanding multicomponent low molecular weight gels from gelators to networks. J Adv Res 2025; 69:91-106. [PMID: 38570015 PMCID: PMC11954807 DOI: 10.1016/j.jare.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The construction of gels from low molecular weight gelators (LMWG) has been extensively studied in the fields of bio-nanotechnology and other fields. However, the understanding gaps still prevent the prediction of LMWG from the full design of those gel systems. Gels with multicomponent become even more complicated because of the multiple interference effects coexist in the composite gel systems. AIM OF REVIEW This review emphasizes systems view on the understanding of multicomponent low molecular weight gels (MLMWGs), and summarizes recent progress on the construction of desired networks of MLMWGs, including self-sorting and co-assembly, as well as the challenges and approaches to understanding MLMWGs, with the hope that the opportunities from natural products and peptides can speed up the understanding process and close the gaps between the design and prediction of structures. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, understanding the complicated multicomponent gels systems requires a systems perspective on MLMWGs. Secondly, several protocols can be applied to control self-sorting and co-assembly behaviors in those multicomponent gels system, including the certain complementary structures, chirality inducing and dynamic control. Thirdly, the discussion is anchored in challenges and strategies of understanding MLMWGs, and some examples are provided for the understanding of multicomponent gels constructed from small natural products and subtle designed short peptides.
Collapse
Affiliation(s)
- Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
5
|
Yamashita K, Ito A, Ishida M, Shintani Y, Ikeda M, Hadano S, Izumi M, Ochi R. Stereoisomerism-dependent gelation and crystal structures of glycosylated N-methylbromomaleimide-based supramolecular hydrogels. SOFT MATTER 2025. [PMID: 39981688 DOI: 10.1039/d4sm01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
In this study, we developed glycosylated N-methylbromomaleimide-based supramolecular hydrogels exhibiting colour change along with gel-sol transition and found that the stereoisomerism of the saccharide residue affects their gelation ability. Single-crystal X-ray diffraction analysis revealed the molecular packing and hydrogen-bonding networks contributed by the saccharide residues. Interestingly, it was found that water molecules were incorporated into the hydrogen-bonding network in the crystals of the compounds that showed gelation ability.
Collapse
Affiliation(s)
- Kotoyo Yamashita
- Graduate School of Integrated Arts and Sciences, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
| | - Akitaka Ito
- School of Engineering Science, Kochi University of Technology, Kami, Kochi 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Masashi Ishida
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Yuki Shintani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Innovation Research Center for Quantum Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shingo Hadano
- Graduate School of Integrated Arts and Sciences, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
- Research and Education Faculty, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Masayuki Izumi
- Graduate School of Integrated Arts and Sciences, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
- Research and Education Faculty, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Rika Ochi
- Graduate School of Integrated Arts and Sciences, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
- Research and Education Faculty, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
6
|
Anjum S, Parks K, Clark K, Parker A, Heveran CM, Gerlach R. Strengthening biopolymer adhesives through ureolysis-induced calcium carbonate precipitation. Sci Rep 2025; 15:3453. [PMID: 39870653 PMCID: PMC11772823 DOI: 10.1038/s41598-024-84087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025] Open
Abstract
Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient. Existing mineral fillers can improve the strength of biopolymer adhesives but require the use of crosslinkers that lower process sustainability. This work introduces a novel approach to strengthen biopolymer adhesives through calcium carbonate biomineralization, which avoids the need for crosslinkers. Biomineral fillers produced by either microbially or enzymatically induced calcium carbonate precipitation (MICP and EICP, respectively) were precipitated within guar gum and soy protein biopolymers. Both, MICP and EICP, increased the strength of the biopolymer adhesives. The strength was further improved by optimizing the concentrations of bacteria, urease enzyme, and calcium. The highest strengths achieved were on par with current commercially available nonstructural adhesives. This study demonstrates the feasibility of using calcium carbonate biomineralization to improve the properties of biopolymer adhesives, which increases their potential viability as more sustainable adhesives.
Collapse
Affiliation(s)
- Sobia Anjum
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Kendall Parks
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Kaylin Clark
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
- Department of Mechanical Engineering, Montana State University, Bozeman, USA
| | - Albert Parker
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
- Department of Mathematical Sciences, Montana State University, Bozeman, USA
| | - Chelsea M Heveran
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
- Department of Mechanical Engineering, Montana State University, Bozeman, USA
| | - Robin Gerlach
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, USA.
- Thermal Biology Institute, Montana State University, Bozeman, USA.
| |
Collapse
|
7
|
Ivanov NM, Slivkov AI, Huck WTS. A Urease-Based pH Photoswitch: A General Route to Light-to-pH Transduction. Angew Chem Int Ed Engl 2025; 64:e202415614. [PMID: 39263723 PMCID: PMC11735890 DOI: 10.1002/anie.202415614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
New approaches for the integration of chemical and physical stimuli to control the dynamics of artificial enzymatic reaction networks (ERNs) are needed. Here, we present a general approach to convert a light stimulus into a time-programmed pH response. We developed and characterized a panel of photoswitchable inhibitors of urease. Urease activity, now regulated by light via the photoinhibitors, leads to an increase in pH upon hydrolysis of urea into ammonia. Careful choice of characteristics of light, and concentrations of enzyme, substrate, and photoinhibitor, allowed us to control the timing of the pH transition. Furthermore, as all enzymes have an activity-pH profile, the urease photoinhibitor system can be used to regulate the activities of other enzymes in small reaction networks.
Collapse
Affiliation(s)
- Nikita M. Ivanov
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Alexandar I. Slivkov
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
8
|
Chabatake Y, Tanigawa T, Hirayama Y, Taniguchi R, Ito A, Takahashi K, Noro SI, Akutagawa T, Nakamura T, Izumi M, Ochi R. A 15-crown-5-ether-based supramolecular hydrogel with selection ability for potassium cations via gelation and colour change. SOFT MATTER 2024; 20:8170-8173. [PMID: 39291588 DOI: 10.1039/d4sm00906a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
We developed a novel supramolecular hydrogelator possessing a benzo-15-crown-5 (B15C5) moiety. The hydrogelator can detect colourless potassium cations (K+) via easily readable gelation and colour change arising from a change in the molecular assembling ability through host-guest interactions between B15C5 and K+, which afford a B15C5/K+/B15C5 sandwich complex.
Collapse
Affiliation(s)
- Yuta Chabatake
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
| | - Tomoki Tanigawa
- Graduate School of Integrated Arts and Sciences, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Yuto Hirayama
- Graduate School of Integrated Arts and Sciences, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Ryo Taniguchi
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
| | - Akitaka Ito
- School of Engineering Science, Kochi University of Technology, Kami, Kochi 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Kiyonori Takahashi
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-ku, Sapporo 001-0020, Japan
| | - Shin-Ichiro Noro
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takayoshi Nakamura
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-ku, Sapporo 001-0020, Japan
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-hiroshima 739-8526, Japan
| | - Masayuki Izumi
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
- Graduate School of Integrated Arts and Sciences, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
- Research and Education Faculty, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Rika Ochi
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
- Graduate School of Integrated Arts and Sciences, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
- Research and Education Faculty, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
9
|
Su B, Chi T, Chen W, Xian S, Liu D, Addonizio CJ, Xiang Y, Webber MJ. Using a biocatalyzed reaction cycle for transient and pH-dependent host-guest supramolecular hydrogels. J Mater Chem B 2024; 12:4666-4672. [PMID: 38647183 PMCID: PMC11095629 DOI: 10.1039/d4tb00545g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The formation of transient structures plays important roles in biological processes, capturing temporary states of matter through influx of energy or biological reaction networks catalyzed by enzymes. These natural transient structures inspire efforts to mimic this elegant mechanism of structural control in synthetic analogues. Specifically, though traditional supramolecular materials are designed on the basis of equilibrium formation, recent efforts have explored out-of-equilibrium control of these materials using both direct and indirect mechanisms; the preponderance of such works has been in the area of low molecular weight gelators. Here, a transient supramolecular hydrogel is realized through cucurbit[7]uril host-guest physical crosslinking under indirect control from a biocatalyzed network that regulates and oscillates pH. The duration of transient hydrogel formation, and resulting mechanical properties, are tunable according to the dose of enzyme, substrate, or pH stimulus. This tunability enables control over emergent functions, such as the programmable burst release of encapsulated model macromolecular payloads.
Collapse
Affiliation(s)
- Bo Su
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Teng Chi
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Weike Chen
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Sijie Xian
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Dongping Liu
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Christopher J Addonizio
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Yuanhui Xiang
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Matthew J Webber
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
10
|
Chaudhary A, Kumar K, Singh VK, Rai S, Kumar V, Tungala K, Das A, Jana T. Poly(acrylamide)-co-poly(hydroxyethyl)methacrylate-co-poly(cyclohexyl methacrylate) hydrogel platform for stability, storage and biocatalytic applications of urease. Int J Biol Macromol 2024; 265:131039. [PMID: 38518938 DOI: 10.1016/j.ijbiomac.2024.131039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
In our present work, an explicit crosslinked thermo-responsive hydrogel platform has been developed, by using polyacrylamide (PAAm), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(cyclohexyl methacrylate) (PCHMA), and then coupled with urease to yield bioconjugates (BCs). Synergic effect of these polymer units provides thermoresponsive nature, optimum crosslinking with desired swelling behaviour, and stability and improved catalytic to Urease in the resultant BCs. Synthesis of the terpolymer has been achieved by employing HEMA (monomer as well as crosslinker), instead of using the conventional crosslinkers, through free radical solution polymerization technique. Various grades of TRPUBs have been fabricated by varying HEMA and CHMA contents while keeping fixed amounts of AAm. Further, the structural analysis of BCs has been done by fourier transform infra-red spectroscopic study and their thermal stabilities have been studied by thermogravimetric analysis. Urea present in TRPUBs has beenanalysed for its hydrolysis atdifferent temperatures viz., 25 °C, 45 °C and 70 °C. Further, the effect of crosslinking, temperature and reaction time on catalytic activities of TRPUBs has been studied. TRPUBs grades have showna maximum swelling capacity up to 5200 %; excellent catalytic activity even at 70 °C; and 85 % activity retention after 18 days storage in buffer medium.
Collapse
Affiliation(s)
- Aradhana Chaudhary
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India
| | - Krishna Kumar
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India; Department of Chemistry, School of Basic & Applied Science, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India.
| | - Vinai K Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India
| | - Shailja Rai
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India
| | - Vinod Kumar
- Department of Chemistry, Babu Shivnath Agrawal College, Mathura 281004, Uttar Pradesh, India
| | - Kranthikumar Tungala
- Department of Chemistry, Ewing Christian College, Allahabad University, Prayagraj 211003, Uttar Pradesh, India
| | - Anupam Das
- School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India
| |
Collapse
|
11
|
Rana M, Ahmad R, Taylor AF. A microfluidic double emulsion platform for spatiotemporal control of pH and particle synthesis. LAB ON A CHIP 2023; 23:4504-4513. [PMID: 37766460 DOI: 10.1039/d3lc00711a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The temporal control of pH in microreactors such as emulsion droplets plays a vital role in applications including biomineralisation and microparticle synthesis. Typically, pH changes are achieved either by passive diffusion of species into a droplet or by acid/base producing reactions. Here, we exploit an enzyme reaction combined with the properties of a water-oil-water (W/O/W) double emulsion to control the pH-time profile in the droplets. A microfluidic platform was used for production of ∼100-200 μm urease-encapsulated double emulsions with a tuneable mineral oil shell thickness of 10-40 μm. The reaction was initiated on-demand by addition of urea and a pulse in base (ammonia) up to pH 8 was observed in the droplets after a time lag of the order of minutes. The pH-time profile can be manipulated by the diffusion timescale of urea and ammonia through the oil layer, resulting in a steady state pH not observed in bulk reactive solutions. This approach may be used to regulate the formation of pH sensitive materials under mild conditions and, as a proof of concept, the reaction was coupled to calcium phosphate precipitation in the droplets. The oil shell thickness was varied to select for either brushite microplatelets or hydroxyapatite particles, compared to the mixture of different precipitates obtained in bulk.
Collapse
Affiliation(s)
- Maheen Rana
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Raheel Ahmad
- Massachusetts General Hospital Cancer Center and, Harvard Medical School, Boston, Massachusetts, 02129, USA
| | - Annette F Taylor
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
12
|
Wang Z, Xiao J, Zhao T, Zhang C, Wang L, He N, Kong Q, Wang X. Transient regulation of gel properties by chemical reaction networks. Chem Commun (Camb) 2023; 59:9818-9831. [PMID: 37497715 DOI: 10.1039/d3cc02479b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Transient regulation of gel properties by chemical reaction networks (CRNs) represents an emerging and effective strategy to program or temporally control the structures, properties, and functions of gel materials in a self-regulated manner. CRNs provide significant opportunities to construct complex or sustainable gels with excellent dynamic features, thus expanding the application scope of these materials. CRN-based methods for transiently regulating the gel properties are receiving increasing attention, and the related fields are worth further studying. This feature article focuses on the CRN-mediated transient regulation of six properties of gels, which are transient gelation, transient liquefaction of gels, transient assembly of macroscopic gels, temporary actuation of gels, transient healing ability of kinetically inert gels, and cascade reaction-based self-reporting of external stimuli. Recent advances that showcase the six properties of gels controlled by CRNs are featured, the characterization and structural elucidation of gels are detailed, and the significance, achievements, and expectations of this field are discussed. The strategy of transient regulation of gel properties via CRNs is potentially useful for building the next generation of adaptive functional materials.
Collapse
Affiliation(s)
- Zhongrui Wang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jing Xiao
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Ting Zhao
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Chunxiao Zhang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Luping Wang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Nan He
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Qingming Kong
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
13
|
Buzzaccaro S, Ruzzi V, Gelain F, Piazza R. A Light Scattering Investigation of Enzymatic Gelation in Self-Assembling Peptides. Gels 2023; 9:gels9040347. [PMID: 37102959 PMCID: PMC10137429 DOI: 10.3390/gels9040347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Self-assembling peptides (SAPs) have been increasingly studied as hydrogel-former gelators because they can create biocompatible environments. A common strategy to trigger gelation, is to use a pH variation, but most methods result in a change in pH that is too rapid, leading to gels with hardly reproducible properties. Here, we use the urea-urease reaction to tune gel properties, by a slow and uniform pH increase. We were able to produce very homogeneous and transparent gels at several SAP concentrations, ranging from c=1g/L to c=10g/L. In addition, by exploiting such a pH control strategy, and combining photon correlation imaging with dynamic light scattering measurements, we managed to unravel the mechanism by which gelation occurs in solutions of (LDLK)3-based SAPs. We found that, in diluted and concentrated solutions, gelation follows different pathways. This leads to gels with different microscopic dynamics and capability of trapping nanoparticles. At high concentrations, a strong gel is formed, made of relatively thick and rigid branches that firmly entrap nanoparticles. By contrast, the gel formed in dilute conditions is weaker, characterized by entanglements and crosslinks of very thin and flexible filaments. The gel is still able to entrap nanoparticles, but their motion is not completely arrested. These different gel morphologies can potentially be exploited for controlled multiple drug release.
Collapse
Affiliation(s)
- Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Vincenzo Ruzzi
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Fabrizio Gelain
- Unità di Ingegneria Tissutale, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering, ASST GOM Niguarda, 20162 Milano, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
14
|
A novel citric acid facilitated supramolecular Zinc(II)-metallogel: Toward semiconducting device applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Zhang Y, Li P, Zhang K, Wang X. Temporary Actuation of Bilayer Polymer Hydrogels Mediated by the Enzymatic Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15433-15441. [PMID: 36459698 DOI: 10.1021/acs.langmuir.2c02853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Most soft actuators have the ability of monotonic responsiveness. That is, there is only one response action after being stimulated once. In this work, a temporarily responsive bilayer hydrogel actuator is designed and fabricated by combining a tertiary amine-containing pH-responsive layer and a urease-containing non-responsive layer. The hydrogel actuator can achieve programed deformation and recovery driven by chemical fuels (i.e., acidic urea solutions), which is essentially regulated by rapid acidification and slow enzymatic production of ammonia for recovering the pH of the system. The actuation extent and duration can be simply controlled by the fuel levels, and the repeated actuations are also possible via refueling. Furthermore, we fabricate several hydrogel devices that can display specific patterns or lift an item. This enzymatic method shows new possibilities to control the temporary actuation of polymer hydrogels potentially useful in many fields such as soft robotics, biomimetic devices, and environmental sensing.
Collapse
Affiliation(s)
- Yuanzhi Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, Shandong, China
| | - Panpan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, Shandong, China
| | - Kaiqiang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, Shandong, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, Shandong, China
| |
Collapse
|
16
|
Yadav N, Kumar K, Singh VK, Rai S, Blahatia K, Das A, Jana T. Newly designed acrylamide derivative-based pH-responsive hydrogel-urease bioconjugates: synthesis and catalytic urea hydrolysis. SOFT MATTER 2022; 18:8647-8655. [PMID: 36349658 DOI: 10.1039/d2sm00958g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Jack bean urease, the first nickel metalloenzyme, and crystallized enzymes have historical significance due to their several applications in the biomedical and other fields. For the first time, cross-linker free pH-responsive hydrogel-urease bioconjugates have been reported. Without the use of divinyl benzene or divinyl acrylamide derivatives, urease was immobilized inside the hydrogel matrix and various grades of bioconjugates were synthesized. The hydrogel-urease bioconjugate exhibits excellent swelling-deswelling and pH-responsive characteristics without affecting the urease enzyme. The pH-responsive bioconjugates were characterized by FT-IR, powder XRD, SEM, TGA, and UV-vis spectroscopy. Urea hydrolysis and enzyme affinity have been investigated at pH 4, pH 7, and pH 11 using bioconjugates and free urease. At basic pH, BCs showed excellent enzyme activity. In summary, this technique is effective for stabilizing biomacromolecules at different pHs for a variety of real applications.
Collapse
Affiliation(s)
- Nisha Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur-273010, Uttar Pradesh, India.
| | - Krishna Kumar
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur-273010, Uttar Pradesh, India.
| | - V K Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur-273010, Uttar Pradesh, India.
| | - Shailja Rai
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur-273010, Uttar Pradesh, India.
| | - Kunal Blahatia
- Department of Chemical Engineering, India Institute of Technology Delhi, New Delhi-110016, India
| | - Anupam Das
- School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India
| |
Collapse
|
17
|
Zhao T, E Y, Cui J, Hao J, Wang X. Nonequilibrium regulation of interfacial chemistry for transient macroscopic supramolecular assembly. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Ravarino P, Panja S, Adams DJ. Spatiotemporal Control Over Base-Catalysed Hydrogelation Using a Bilayer System. Macromol Rapid Commun 2022; 43:e2200606. [PMID: 35995598 DOI: 10.1002/marc.202200606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Controlling the formation and directional growth of hydrogels is a challenge. In this paper, we propose a new methodology to program the gel formation both over space and time, using the diffusion and subsequent hydrolysis of 1,1'-carbonyldiimidazole (CDI) from an immiscible organic solution to the aqueous gel media. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paolo Ravarino
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, Bologna, 40126, Italy
| | - Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| |
Collapse
|
19
|
Li P, Song A, Hao J, Wang X. Feedback-controlled topological reconfiguration of molecular assemblies for programming supramolecular structures. SOFT MATTER 2022; 18:3856-3866. [PMID: 35531597 DOI: 10.1039/d2sm00325b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In biology, nonequilibrium assembly is characterized by fuel-driven switching between associating and nonassociating states of biomolecules. This dynamic assembly model has been used routinely to describe the nonequilibrium processes in synthetic systems. Here, we present a G-quartet-based nonequilibrium system based on fuel-driven co-assembly of guanosine 5'-monophosphate disodium salt hydrate and urease. Addition of lanthanum(III) ions to the system caused macroscopic dynamic switching between precipitates and hydrogels. Interestingly, combined analyses of the nonequilibrium systems demonstrated that molecules could switch between two distinct associating states without undergoing a nonassociating state. This finding suggested a nonequilibrium assembly mechanism of topological reconfiguration of molecular assemblies. We detailed quantitatively the nonequilibrium assembly mechanism to precisely control the phase behaviors of the active materials; thus, we were able to use the materials for transient-gel-templated polymerization and transient circuit connection. This work presents a new nonequilibrium system with unusual phase behaviors, and the resultant active hydrogels hold promise in applications such as fluid confinements and transient electronics.
Collapse
Affiliation(s)
- Panpan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
20
|
Kong X, Li Y, Liu X. A review of thermosensitive antinutritional factors in plant-based foods. J Food Biochem 2022; 46:e14199. [PMID: 35502149 DOI: 10.1111/jfbc.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
Legumes and cereals account for the vast proportion of people's daily intake of plant-based foods. Meanwhile, a large number of antinutritional factors in legumes and cereals hinder the body absorption of nutrients and reduce the nutritional value of food. In this paper, the antinutritional effects, determination, and passivation methods of thermosensitive antinutritional factors such as trypsin inhibitors, urease, lipoxygenase, and lectin were reviewed to provide theoretical help to reduce antinutritional factors in food and improve the utilization rate of plant-based food nutrition. Since trypsin inhibitors and lectin have been more extensively studied and reviewed previously, the review mainly focused on urease and lipoxygenase. This review summarized the information of thermosensitive antinutritional factors, trypsin inhibitors, urease, lipoxygenase, and lectin, in cereals and legumes. The antinutritional effects, and physical and chemical properties of trypsin inhibitors, urease, lipoxygenase, and lectin were introduced. At the same time, the research methods for the detection and inactivation of these four antinutritional factors were also summarized in the order of research conducted time. The rapid determination and inactivation of antinutrients will be the focus of attention for the food industry in the future to improve the nutritional value of food. Exploring what structural changes could passivation technologies bring to antinutritional factors will provide a theoretical basis for further understanding the mechanisms of antinutritional factor inactivation. PRACTICAL APPLICATIONS: Antinutritional factors in plant-based foods hinder the absorption of nutrients and reduce the nutritional value of the food. Among them, thermosensitive antinutritional factors, such as trypsin inhibitors, urease, lipoxygenase, and lectins, have a high proportion among the antinutritional factors. In this paper, we investigate thermosensitive antinutritional factors from three perspectives: the antinutritional effect of thermosensitive antinutritional factors, determination, and passivation methods. The current passivation methods for thermosensitive antinutritional factors revolve around biological, physical, and chemical aspects, and their elimination mechanisms still need further research, especially at the protein structure level. Reducing the level of antinutritional factors in the future food industry while controlling the loss of other nutrients in food is a goal that needs to be balanced. This paper reviews the antinutritional effects of thermosensitive antinutritional factors and passivation methods, expecting to provide new research ideas to improve the nutrient utilization of food.
Collapse
Affiliation(s)
- Xin Kong
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - You Li
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
21
|
Das S, Das T, Das P, Das D. Controlling the lifetime of cucurbit[8]uril based self-abolishing nanozymes. Chem Sci 2022; 13:4050-4057. [PMID: 35440999 PMCID: PMC8985584 DOI: 10.1039/d1sc07203j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Nature has evolved a unique mechanism of self-regulatory feedback loops that help in maintaining an internal cellular environment conducive to growth, healing and metabolism. In biology, enzymes display feedback controlled switchable behaviour to upregulate/downregulate the generation of metabolites as per the need of the cells. To mimic the self-inhibitory nature of certain biological enzymes under laboratory settings, herein, we present a cucurbit[8]uril based pH responsive supramolecular peptide amphiphile (SPA) that assembles into hydrolase mimetic vesicular nanozymes upon addition of alkaline TRIS buffer (activator) but disintegrates gradually owing to the catalytic generation of acidic byproducts (deactivator). The lifetime of these nanozymes could be manipulated in multiple ways, either by varying the amount of catalytic groups on the surface of the vesicles, by changing the acid generating substrate, or by changing the ratio between the activator and the substrate. The self-inhibitory nanozymes displayed highly tunable lifetimes ranging from minutes to hours, controlled and in situ generation of deactivating agents and efficient reproducibility across multiple pH cycles.
Collapse
Affiliation(s)
- Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| | - Tanushree Das
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| | - Priyam Das
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
22
|
Saxena A, Sharda S, Kumar S, Kumar B, Shirodkar S, Dahiya P, Sahney R. Synthesis of Alginate Nanogels with Polyvalent 3D Transition Metal Cations: Applications in Urease Immobilization. Polymers (Basel) 2022; 14:polym14071277. [PMID: 35406151 PMCID: PMC9002911 DOI: 10.3390/polym14071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Biocompatible nanogels are highly in demand and have the potential to be used in various applications, e.g., for the encapsulation of sensitive biomacromolecules. In the present study, we have developed water-in-oil microemulsions of sodium alginate sol/hexane/Span 20 as a template for controlled synthesis of alginate nanogels, cross-linked with 3d transition metal cations (Mn2+, Fe3+, and Co2+). The results suggest that the stable template of 110 nm dimensions can be obtained by microemulsion technique using Span 20 at concentrations of 10mM and above, showing a zeta potential of −57.3 mV. A comparison of the effects of the cross-links on the morphology, surface charge, protein (urease enzyme) encapsulation properties, and stability of the resulting nanogels were studied. Alginate nanogels, cross-linked with Mn2+, Fe3+, or Co2+ did not show any gradation in the hydrodynamic diameter. The shape of alginate nanogels, cross-linked with Mn2+ or Co2+, were spherical; whereas, nanogels cross-linked with Fe3+ (Fe–alginate) were non-spherical and rice-shaped. The zeta potential, enzyme loading efficiency, and enzyme activity of Fe–alginate was the highest among all the nanogels studied. It was found that the morphology of particles influenced the percent immobilization, loading capacity, and loading efficiency of encapsulated enzymes. These particles are promising candidates for biosensing and efficient drug delivery due to their relatively high loading capacity, biocompatibility, easy fabrication, and easy handling.
Collapse
Affiliation(s)
- Abhishek Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
| | - Shivani Sharda
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
| | - Sumit Kumar
- Radioanalytical Chemistry Division, Radiological Laboratories, Bhabha Atomic Research Centre, Mumbai 40008, India;
| | - Benu Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
| | - Praveen Dahiya
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
| | - Rachana Sahney
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
- Correspondence: ; Tel.: +91-9810-2820-38
| |
Collapse
|
23
|
Affiliation(s)
- Haoyue Lu
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| | - Jingcheng Hao
- Shandong University Key Laboratory of Colloid and Interface Chemistry 27 Shanda Nanlu 250100 Jinan CHINA
| | - Xu Wang
- Shandong University National Engineering Research Center for Colloidal Materials 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
24
|
Castelletto V, Hamley IW. Amyloid
and Hydrogel Formation of a Peptide Sequence
from a Coronavirus Spike Protein. ACS NANO 2022; 16:1857-1867. [PMCID: PMC8867915 DOI: 10.1021/acsnano.1c10658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 05/28/2023]
Abstract
![]()
We demonstrate that
a conserved coronavirus spike protein peptide
forms amyloid structures, differing from the native helical conformation
and not predicted by amyloid aggregation algorithms. We investigate
the conformation and aggregation of peptide RSAIEDLLFDKV,
which is a sequence common to many animal and human coronavirus spike
proteins. This sequence is part of a native α-helical S2 glycoprotein
domain, close to and partly spanning the fusion sequence. This peptide
aggregates into β-sheet amyloid nanotape structures close to
the calculated pI = 4.2, but forms disordered monomers at high and
low pH. The β-sheet conformation revealed by FTIR and circular
dichroism (CD) spectroscopy leads to peptide nanotape structures,
imaged using transmission electron microscopy (TEM) and probed by
small-angle X-ray scattering (SAXS). The nanotapes comprise arginine-coated
bilayers. A Congo red dye UV–vis assay is used to probe the
aggregation of the peptide into amyloid structures, which enabled
the determination of a critical aggregation concentration (CAC). This
peptide also forms hydrogels under precisely defined conditions of
pH and concentration, the rheological properties of which were probed.
The observation of amyloid formation by a coronavirus spike has relevance
to the stability of the spike protein conformation (or its destabilization via pH change), and the peptide may have potential utility
as a functional material. Hydrogels formed by coronavirus peptides
may also be of future interest in the development of slow-release
systems, among other applications.
Collapse
Affiliation(s)
- Valeria Castelletto
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | - Ian W. Hamley
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| |
Collapse
|
25
|
Using Rheology to Understand Transient and Dynamic Gels. Gels 2022; 8:gels8020132. [PMID: 35200514 PMCID: PMC8872063 DOI: 10.3390/gels8020132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Supramolecular gels can be designed such that pre-determined changes in state occur. For example, systems that go from a solution (sol) state to a gel state and then back to a sol state can be prepared using chemical processes to control the onset and duration of each change of state. Based on this, more complex systems such as gel-to-sol-to-gel and gel-to-gel-to-gel systems can be designed. Here, we show that we can provide additional insights into such systems by using rheological measurements at varying values of frequency or strain during the evolution of the systems. Since the different states are affected to different degrees by the frequency and/or strain applied, this allows us to better understand and follow the changes in state in such systems.
Collapse
|
26
|
Német N, Miele Y, Shuszter G, Tóth EL, Maróti JE, Szabó PJ, Rossi F, Lagzi I. Inhibition of the urea-urease reaction by the components of the zeolite imidazole frameworks-8 and the formation of urease-zinc-imidazole hybrid compound. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-021-02139-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AbstractIn the past decade, much effort has been devoted to using chemical clock-type reactions in material design and driving the self-assembly of various building blocks. Urea-urease enzymatic reaction has chemical pH clock behavior in an unbuffered medium, in which the induction time and the final pH can be programmed by the concentrations of the reagents. The urea-urease reaction can offer a new alternative in material synthesis, where the pH and its course in time are crucial factors in the synthesis. However, before using it in any synthesis method, it is important to investigate the possible effects of the reagents on the enzymatic reaction. Here we investigate the effect of the reagents of the zeolite imidazole framework-8 (zinc ions and 2-methylimidazole) on the urea-urease reaction. We have chosen the zeolite imidazole framework-8 because its formation serves as a model reaction for the formation of other metal–organic frameworks. We found that, besides the inhibition effect of the zinc ions which is well-known in the literature, 2-methylimidazole inhibits the enzymatic reaction as well. In addition to the observed inhibition effect, we report the formation of a hybrid urease-zinc-2-methylimidazole hybrid material. To support the inhibition effect, we developed a kinetic model which reproduced qualitatively the experimentally observed kinetic curves.
Collapse
|
27
|
Panja S, Dietrich B, Trabold A, Zydel A, Qadir A, Adams DJ. Varying the hydrophobic spacer to influence multicomponent gelation. Chem Commun (Camb) 2021; 57:7898-7901. [PMID: 34286734 DOI: 10.1039/d1cc02786g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mixing low molecular weight gelators (LMWGs) shows promise as a means of preparing innovative materials with exciting properties. Here, we investigate the effect of increasing hydrophobic chain length on the properties of the resulting multicomponent systems which are capable of showing ambidextrous phase behaviour on pH perturbation.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Bart Dietrich
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Adriana Trabold
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Agata Zydel
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Aleena Qadir
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
28
|
Panja S, Adams DJ. Urea-Urease Reaction in Controlling Properties of Supramolecular Hydrogels: Pros and Cons. Chemistry 2021; 27:8928-8939. [PMID: 33861488 PMCID: PMC8360084 DOI: 10.1002/chem.202100490] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Supramolecular hydrogels are useful in many areas such as cell culturing, catalysis, sensing, tissue engineering, drug delivery, environmental remediation and optoelectronics. The gels need specific properties for each application. The properties arise from a fibrous network that forms the matrix. A common method to prepare hydrogels is to use a pH change. Most methods result in a sudden pH jump and often lead to gels that are hard to reproduce and control. The urease-urea reaction can be used to control hydrogel properties by a uniform and controlled pH increase as well as to set up pH cycles. The reaction involves hydrolysis of urea by urease and production of ammonia which increases the pH. The rate of ammonia production can be controlled which can be used to prepare gels with differing properties. Herein, we show how the urease-urea reaction can be used for the construction of next generation functional materials.
Collapse
Affiliation(s)
- Santanu Panja
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Dave J. Adams
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|