1
|
Jose C, Sarkar A, Khopade KV, Boomishankar R. Portal Substituent Modulations in Chiral Imido-Pd(II) Cages for the Enhanced Separation of Styrene Oxide Enantiomers. Inorg Chem 2025; 64:10313-10319. [PMID: 40374282 DOI: 10.1021/acs.inorgchem.5c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Sensing and separation of enantiomers are crucial for the synthesis of biologically relevant compounds as well as for applications in catalysis and pharmaceutical development. Chiral coordination cages have gained significant attention as effective platforms for enantioselective processes through their well-defined, tunable cavities that facilitate host-guest interactions. In this study, we systematically explored the enantioselective binding and separation properties of two tetrahedral Pd(II) cages, 1-R and 2-R, with the molecular formula [Pd3(PO[N(RCH(CH3)Ph)3])4(C6O4X2)6] (X = Cl for 1-R, and X = F for 2-R). Their enantioselective abilities were investigated for small chiral molecules with diverse functional groups. Notably, the 2-R cage demonstrated a high enantioselectivity value of 88 for R-styrene oxide. Chiral separation experiments further revealed impressive enantiomeric excess (ee) values of 98% for R-styrene oxide from their racemic mixtures upon desorption from 2-R. The enhanced selectivity and separation efficiency were attributed to an optimal guest-to-cavity fit and the presence of multiple interaction sites within the host framework. Remarkably, portal substituent modulation in 2-R led to a 16-fold enhancement in enantioselective separation efficiency compared to 1-R, primarily due to improved portal dimensions, tighter molecular packing, and increased hydrogen bonding interactions. These findings highlight the potential of neutral chiral coordination cages for various enantioselective applications.
Collapse
Affiliation(s)
- Cavya Jose
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Abhradeep Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Kishor V Khopade
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory and Academy of Scientific and Innovative Research (AcSIR), Dr. Homi Bhabha Road, Pune 411008, India
| | - Ramamoorthy Boomishankar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
2
|
Huang B, Zhou M, Hong QY, Wu MX, Zhao XL, Xu L, Gao EQ, Yang HB, Shi X. A Redox-Active Phenothiazine-based Pd 2L 4-Type Coordination Cage and Its Isolable Crystalline Polyradical Cations. Angew Chem Int Ed Engl 2024; 63:e202407279. [PMID: 38872356 DOI: 10.1002/anie.202407279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage 14⋅+ through post-synthetic oxidation of a redox-active phenothiazine-based Pd2L4-type coordination cage 1. It's worth noting that 1 exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-tert-butyl-4-methoxyphenyl substituent. The generation of 14⋅+ through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of 1 can also produce 14⋅+ which can be reversibly reduced back to the original cage 1, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of 14⋅+, whose electronic structure and conformation are distinct to original 1. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in 14⋅+. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Manfei Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qiong-Yan Hong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Li Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - En-Qing Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
3
|
Jose C, Sarkar M, Rajasekar P, Tewari T, Boomishankar R. Squarate-Tethered Enantiomeric Imido-Pd(II) Cages for Recognition and Separation of Chiral Organic Molecules. Inorg Chem 2023; 62:19375-19381. [PMID: 37939248 DOI: 10.1021/acs.inorgchem.3c03105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Chiral coordination cages have emerged as an efficient platform for enantioselective processes via host-guest interactions. Here, we report an enantiomeric pair of tetrahedral cages of formula [(Pd3[PO(N(*CH(CH3)Ph)3])4(C4O4)6] supported by chiral tris(imido)phosphate trianions and squarate (C4O4)2- linkers. These cages exhibit unusual coordination isomerism for Pd(II)-linker bonds compared with the other Pd(II) cages of this family. Further, they were employed for the recognition and separation of small chiral molecules containing various functionalities. High enantioselectivities of 67 and 41 were found in the case of R-4-hydroxydihydrofuran-2(3H)-one and S-epichlorohydrin, recognized by the R-isomer of the cage. Chiral separation studies showed remarkable enantiomeric excess values of 93 and 85% for S-epichlorohydrin and R-4-benzyl-2-oxazolidinone, respectively, from their racemic mixtures. These studies showcase the potential of coordination cages for enantioselective applications.
Collapse
Affiliation(s)
- Cavya Jose
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Meghamala Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Prabhakaran Rajasekar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tanuja Tewari
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory and Academy of Scientific and Innovative Research (AcSIR), Dr. Homi Bhabha Road, Pune 411008, India
| | - Ramamoorthy Boomishankar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Centre of Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
4
|
Sarkar M, Rajasekar P, Jose C, Boomishankar R. Polyanionic Imido-P(V) Ligands: From Transition Metal Complexes to Coordination Driven Self-Assemblies. CHEM REC 2021; 22:e202100281. [PMID: 34962082 DOI: 10.1002/tcr.202100281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/03/2021] [Indexed: 11/11/2022]
Abstract
The chemistry of the imido-anions of the main group elements has been studied for more than three decades. The imido (NR)- group is isoelectronic to the oxo (=O) group and can coordinate with metal ions through its lone pairs of electrons. The polyimido-P(V) anions are well explored as they resemble the phosphorus oxo moieties such as H3 PO4 , H2 PO4 - , HPO4 2- and PO4 3- species. These imido anions are typically generated using strong main group organometallic reagents such as n BuLi, Et2 Zn, Me3 Al and n Bu2 Mg, etc. As a result, their coordination chemistry has been restricted to reactions in anhydrous aprotic solvents for a few main group metal ions. This account presents our findings on using certain soft transition metal such Ag(I) and Pd (II) for isolating these imido-P(V) anions as their corresponding self-assembled clusters and cages. Using the various salts of Ag(I) ions in reaction with 2-pyridyl (2 Py) functionalized phosphonium salts and phosphoric triamides, we obtained the mono- and dianionic form of these imido ligands {[P(N2 Py)2 (NH2 Py)2 ]- , [P(N2 Py)2 (NH2 Py)]- , [PO(N2 Py)(NH2 Py)2 ]2- } and derived interesting examples of tri, penta, hepta and octanuclear Ag(I) clusters. Interestingly, by using the salts of Pd (II) ions, the elusive imido-phosphate trianions of the type [(RN)3 PO]3- (R=t Bu, c Hex, i Pr) were generated in a facile one pot reaction as their corresponding tri- and hexanuclear clusters of the type {Pd3 [(NR)3 PO](OAc)3 }n (n=1 or 2). These trianions acts as a cis-coordinated hexadentate ligand for a trinuclear Pd (II) cluster and serve as the polyhedral building units for constructing hitherto unknown family of neutral cages in tetrahedral {Pd3 [(Ni Pr)3 PO]4 (L)6 } and cubic {Pd3 [(Ni Pr)3 PO]8 (L)12 } structures in the presence of suitable linker ligands (L2- ). These cages show interesting host-guest chemistry and post-assembly reactions. Remarkably, by employing chiral tris(imido)phosphate trianions, enantiopure chiral cages of the type [(Pd3 X*)4 (L)6 ], ([X*]3- =RRR- or SSS-[PO(N(*CH(CH3 )Ph)3 ]3- ), were synthesized and used for the chiral-recognition and enantio-separation of small racemic guest molecules. Some of these chiral cages were also shown to exhibit polyradical framework structures. In future, these and other similar types of cages are envisioned as potential molecular vessels for performing the reactions in their confined environment. The enantiomeric cages can be probed for asymmetric catalysis and the separation of a range of small chiral molecules.
Collapse
Affiliation(s)
- Meghamala Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Prabhakaran Rajasekar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Cavya Jose
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ramamoorthy Boomishankar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India.,Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|