1
|
Liu Z, Zhang C, Li S, Zhou Y, Lan F, Zhao X, Su Z, Hu C, Deng P, Yu Z. Light-intersecting Photoclick Reactions for Bioorthogonal Labeling on Single Cells: Dibenzo[b,f][1,4,5]thiadiazepine-11,11-dioxide as a Photoswitchable Reporter. Angew Chem Int Ed Engl 2025; 64:e202501936. [PMID: 39972240 DOI: 10.1002/anie.202501936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
The advancement of ring-strain preloaded dipolaro-/dienophiles plays a crucial role in bioorthogonal chemistry, enabling multiple high-precision conjugations toward biomolecules simultaneously. However, durability of these ring-strain preloaded reagents in vivo is a concern, as the ring-strain is not reloadable once released during delivery process. In situ conversion of light-energy into ring-strain is a promising approach to ensure both biostability and spatiotemporal control endowed by light. Herein, we advance a seven-membered cyclic azobenzene photoswitch, dibenzo[b,f][1,4,5]thiadiazepine-11,11-dioxide (DBTDD), bridged by a sulphone moiety. The photoisomerization from Z-DBTDD to ring-strain-loaded E-DBTDD enables an accelerated cycloaddition with various photogenerated dipoles to establish novel photoclick reactions, featuring a dual-λ (405 nm+445 nm) synergistic control. In reactions with monoarylsydnones, a higher photo-stationary ratio of E-DBTDD, achieved by varying the power density of 445 nm laser, presented an ultrafast cycloaddition rate (kE=6.6×107 M-1 s-1) with a 13.8-fold acceleration compared with Z-DBTDD, which is superior to established ring-strain reporters (e.g., BCN-OH, sTCO-OH, DBTD). Then, bioorthogonal photoclick labeling of DBTDD tagged artificial phospholipid on living cell membranes was realized at subcellular resolution via an essential dual-λ intersecting lithography with an elevated efficiency by adjusting the 445 nm power density.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Sitong Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fengying Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Zhang H, Fang M, Lin Q. Photo-activatable Reagents for Bioorthogonal Ligation Reactions. Top Curr Chem (Cham) 2023; 382:1. [PMID: 38091203 PMCID: PMC11803906 DOI: 10.1007/s41061-023-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Light-induced bioorthogonal reactions offer spatiotemporal control over selective biomolecular labeling. This review covers the recent advances in the design of photo-activatable reagents for bioorthogonal conjugation reactions in living systems. These reagents are stable in the absence of light, but transformed into reactive species upon light illumination, which then undergo rapid ligation reactions. The light wavelength has been tuned from ultraviolet to near infrared to enable efficient photo-activation in reactions in deep tissues. The most prominent photo-activatable reagents are presented, including tetrazoles, tetrazines, 9,10-phenanthrenequinone, diarylsydnones, and others. A particular focus is on the strategies for improving reaction kinetics and biocompatibility accomplished through careful molecular engineering. The utilities of these photo-activatable reagents are illustrated through a broad range of biological applications, including in vivo protein labeling, positron emission tomography (PET) imaging, responsive hydrogels, and fluorescence microscopy. The further development and optimization of these biocompatible photo-activatable reagents should lead to new chemical biology strategies for studying biomolecular structure and function in living systems.
Collapse
Affiliation(s)
- Heyang Zhang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Ming Fang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
3
|
Du G, Fu J, Zheng Y, Hu F, Shen X, Li B, Zhao X, Yu Z. A facile and light-controllable drug combination for enhanced photopharmacology. Org Biomol Chem 2023; 21:1021-1026. [PMID: 36607248 DOI: 10.1039/d2ob02190k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the feasibility of creating cyclic azobenzene/azobenzene-based photo-switchable drugs that can fine-tune antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with light dependence. Furthermore, a "light-controlled drug combination" of these obtained drugs could be reversibly controlled to efficiently improve the antibiotic effect so as to reduce the minimum inhibitory concentrations (MICs) with different wavelength light illumination. Importantly, their antimicrobial activity could be easily manipulated by using light in bacterial patterning studies with high spatiotemporal precision, which might allow for localized activation of drugs and provide an alternative solution for practical clinical application in photopharmacology.
Collapse
Affiliation(s)
- Guangxi Du
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Jielin Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yuanqin Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Fuqiang Hu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Xin Shen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Baolin Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Shen X, Zhang C, Lan F, Su Z, Zheng Y, Zheng T, Xiong Q, Xie X, Du G, Zhao X, Hu C, Deng P, Yu Z. Dibenzo[
b
,
f
][1,4,5]chalcogenadiazepine Photoswitches: Conversion of Excitation Energy into Ring Strain. Angew Chem Int Ed Engl 2022; 61:e202209441. [DOI: 10.1002/anie.202209441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xin Shen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Fengying Lan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yuanqin Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tingting Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qin Xiong
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xinyu Xie
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Guangxi Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Pengchi Deng
- Analytical & Testing Center Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
5
|
Shen X, Zhang C, Lan F, Su Z, Zheng Y, Zheng T, Xiong Q, Xie X, Du G, Zhao X, Hu C, Deng P, Yu Z. Dibenzo[b,f][1,4,5]chalcogenadiazepine Photoswitches: Conversion of Excitation Energy into Ring Strain. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Shen
- Sichuan University Department of Chemistry 610000 Chengdu CHINA
| | - Cefei Zhang
- Sichuan University College of Chemistry CHINA
| | - Fengying Lan
- Sichuan University Department of Chemistry CHINA
| | - Zhishan Su
- Sichuan University College of Chemistry CHINA
| | | | | | - Qin Xiong
- Sichuan University Department of Chemistry CHINA
| | - Xinyu Xie
- Sichuan University Department of Chemistry CHINA
| | - Guangxi Du
- Sichuan University Department of Chemistry CHINA
| | - Xiaohu Zhao
- Sichuan University Department of Chemistry CHINA
| | - Changwei Hu
- Sichuan University College of Chemistry CHINA
| | - Pengchi Deng
- Sichuan University Analytical & Testing Center CHINA
| | - Zhipeng Yu
- Sichuan University - Wangjiang Campus: Sichuan University College of Chemistry College of Chemistry29 Wangjianglu, Jiuyanqiao 610064 Chengdu CHINA
| |
Collapse
|
6
|
Deepthi A, Acharjee N, Sruthi S, Meenakshy C. An overview of nitrile imine based [3+2] cycloadditions over half a decade. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|