1
|
Matoba H, Oba K, Li H, Mizuno Y, Wang Q, Yoritate M, Aso M, Sodeoka M, Yoshida M, Yashiroda Y, Hirai G. Structure-activity relationship study of nitrogen signaling factors. Bioorg Med Chem Lett 2024; 109:129857. [PMID: 38909706 DOI: 10.1016/j.bmcl.2024.129857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
We have synthesized 10 analogs of oxylipins, which are nitrogen signaling factors (NSFs) that mediate cell-to-cell communication in the fission yeast Schizosaccharomyces pombe, and evaluated their structure-activity relationships with the aim of developing molecular probes for NSFs. We found that the OH or OAc group at C10 could be replaced with a compact amide (17) or carbamate (19). Introducing an alkyne as a detection tag at C10 led to decreased, though still sufficient, activity. Introducing an alkyne at the C18 position showed a similar trend, suggesting tolerance is relatively low even for compact functional groups such as alkynes. Although introduction of a diazirine moiety as a photoreactive group at the C5 position decreased the activity, we found that introducing diazirine at the C13 position was acceptable, and compound 38 exhibited potent NSF activity. These findings will be helpful in the development of molecular probes for NSFs.
Collapse
Affiliation(s)
- Hiroaki Matoba
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouhei Oba
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Huanlin Li
- RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan
| | - Yuta Mizuno
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Qianqian Wang
- RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Makoto Yoritate
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mariko Aso
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikiko Sodeoka
- RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan; RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan; RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan; Office of University Professors, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan; RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan.
| | - Go Hirai
- Graduate Schools of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan.
| |
Collapse
|
2
|
Walrant A, Sachon E. Photoaffinity labeling coupled to MS to identify peptide biological partners: Secondary reactions, for better or for worse? MASS SPECTROMETRY REVIEWS 2024. [PMID: 38576378 DOI: 10.1002/mas.21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Affinity photolabeling is a smart method to study noncovalent and transient interactions and provide a submolecular picture of the contacts between interacting partners. In this review, we will focus on the identification of peptide partners using photoaffinity labeling coupled to mass spectrometry in different contexts such as in vitro with a purified potential partner, in model systems such as model membranes, and with live cells using both targeted and nontargeted proteomics studies. Different biological partners will be described, among which glycoconjugates, oligonucleotides, peptides, proteins, and lipids, with the photoreactive label inserted either on the peptide of interest or on the potential partner. Particular attention will be paid to the observation and characterization of specific rearrangements following the photolabeling reaction, which can help characterize photoadducts and provide a better understanding of the interacting systems and environment.
Collapse
Affiliation(s)
- Astrid Walrant
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, Paris, France
| | - Emmanuelle Sachon
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, Paris, France
- Sorbonne Université, Mass Spectrometry Sciences Sorbonne Université, MS3U platform, Fédération de Chimie moléculaire de Paris centre, Paris, France
| |
Collapse
|
3
|
Saryeddine L, Hadnutt J, Grélard A, Morvan E, Alies B, Buré C, Bestel I, Badarau E. Design of light-responsive amphiphilic self-assemblies: A novel application of the photosensitive diazirine moiety. J Colloid Interface Sci 2024; 653:1792-1804. [PMID: 37805274 DOI: 10.1016/j.jcis.2023.09.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Diazirine is one of the smallest photo-sensitive moieties discovered to date. When incorporated in the structure of phospholipids, its minimal size has a low impact on the morphology of the resultant liposomes. A DMPC-diazirine analogue was designed and subsequently used to generate liposomes with a lower permeability and a lower phase-transition temperature compared to control DMPC liposomes. Contrary to control liposomes, in the absence of light, the photosensitive nanoparticles retained the cargo (calcein) for at least 10 days. However, upon irradiation, diazirine's conversion triggered the fluorophore release within minutes. The kinetics of the release could be tuned by the power and duration of the irradiation process. The same approach can be used on other nanomaterials, with the final goal of discovering a release profile appropriate not only for therapeutic applications, but also for agrochemicals delivery or cosmoceutics.
Collapse
Affiliation(s)
- Lilian Saryeddine
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Josh Hadnutt
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France; Univ. Bordeaux, CNRS, INSERM, UAR3033 US001, IECB, 33600 Pessac, France
| | - Bruno Alies
- Univ. Bordeaux, CNRS, INSERM U1212, UMR 5320, 33076 Bordeaux, France
| | - Corinne Buré
- Univ. Bordeaux, CNRS, INSERM, UAR3033 US001, IECB, 33600 Pessac, France
| | - Isabelle Bestel
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Eduard Badarau
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France.
| |
Collapse
|
4
|
Wegner T, Laskar R, Glorius F. Lipid mimetics: A versatile toolbox for lipid biology and beyond. Curr Opin Chem Biol 2022; 71:102209. [PMID: 36122522 DOI: 10.1016/j.cbpa.2022.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Being the principal component of biological membranes lipids are essential building blocks of life. Given their huge biological importance, the investigation of lipids, their properties, interactions and metabolic pathways is of prime importance for the fundamental understanding of living cells and organisms as well as the emergence of diseases. Different strategies have been applied to investigate lipid-mediated biological processes, one of them being the use of lipid mimetics. They structurally resemble their natural counterparts but are equipped with functionality that can be used to probe or manipulate lipid-mediated biological processes and biomembranes. Lipid mimetics therefore constitute an indispensable toolbox for lipid biology and membrane research but also beyond for potential applications in medicine or synthetic biology. Herein, we highlight recent advances in the development and application of lipid-mimicking compounds.
Collapse
Affiliation(s)
- Tristan Wegner
- Institute of Organic Chemistry, University of Münster, Münster, Germany
| | - Ranjini Laskar
- Institute of Organic Chemistry, University of Münster, Münster, Germany
| | - Frank Glorius
- Institute of Organic Chemistry, University of Münster, Münster, Germany.
| |
Collapse
|
5
|
Korn P, Schwieger C, Gruhle K, Garamus VM, Meister A, Ihling C, Drescher S. Azide- and diazirine-modified membrane lipids: Physicochemistry and applicability to study peptide/lipid interactions via cross-linking/mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184004. [PMID: 35841926 DOI: 10.1016/j.bbamem.2022.184004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Although the incorporation of photo-activatable lipids into membranes potentially opens new avenues for studying interactions with peptides and proteins, the question of whether azide- or diazirine-modified lipids are suitable for such studies remains controversial. We have recently shown that diazirine-modified lipids can indeed form cross-links to membrane peptides after UV activation and that these cross-links can be precisely determined in their position by mass spectrometry (MS). However, we also observed an unexpected backfolding of the lipid's diazirine-containing stearoyl chain to the membrane interface challenging the potential application of this modified lipid for future cross-linking (XL)-MS studies of protein/lipid interactions. In this work, we compared an azide- (AzidoPC) and a diazirine-modified (DiazPC) membrane lipid regarding their self-assembly properties, their mixing behavior with saturated bilayer-forming phospholipids, and their reactivity upon UV activation using differential scanning calorimetry (DSC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and MS. Mixtures of both modified lipids with DMPC were further used for photo-chemically induced XL experiments with a transmembrane model peptide (KLAW23) to elucidate similarities and differences between the azide and the diazirine moiety. We showed that both photo-reactive lipids can be used to study lipid/peptide and lipid/protein interactions. The AzidoPC proved easier to handle, whereas the DiazPC had fewer degradation products and a higher cross-linking yield. However, the problem of backfolding occurs in both lipids; thus, it seems to be a general phenomenon.
Collapse
Affiliation(s)
- Patricia Korn
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Christian Schwieger
- Institute of Chemistry, MLU Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany; Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology-Physical Biotechnology, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany; Center for Structural Mass Spectrometry, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany; Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Yu W, Baskin JM. Photoaffinity labeling approaches to elucidate lipid-protein interactions. Curr Opin Chem Biol 2022; 69:102173. [PMID: 35724595 DOI: 10.1016/j.cbpa.2022.102173] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
Lipid-protein interactions serve as the basis for many of the diverse roles of lipids. However, these noncovalent binding events are often weak, transient, or dependent upon environmental cues. Photoaffinity labeling can preserve these interactions under native conditions, enabling their biochemical profiling. Typically, photoaffinity labeling probes contain a diazirine photocrosslinker and a click chemistry handle for enrichment and downstream analysis. In this review, we summarize recent advances in the understanding the mechanisms of diazirine photocrosslinking, and we provide an overview of recent applications of photoaffinity labeling to reveal the interactions of diverse types of lipids with specific members of the proteome.
Collapse
Affiliation(s)
- Weizhi Yu
- Department of Chemistry and Chemical Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA.
| |
Collapse
|