1
|
Yan J, Ren L, Lu X, Li W, Zhang A. Supramolecular Chiral Assembly of Dendritic Amphiphiles in Aqueous Media. Chemistry 2025; 31:e202403450. [PMID: 39601355 DOI: 10.1002/chem.202403450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Dendritic amphiphiles are a promising class of topological blocks for self-assembly to construct chiral supramolecular aggregates in aqueous media. Their unique dendritic geometry, structure variability and multivalence can mediate the assemblies with versatile morphologies and functions. The bulky dendritic moieties also enable the appropriate association-repulsion balance to control supramolecular growth, and simultaneously shield the assemblies with enhanced stabilities. Moreover, the crowded packing of dendritic segments facilitates the efficient chirality transfer from molecular level to supramolecular level, to achieve chirality amplification or enhancement. Dendritic moieties also provide chances to stabilize the assemblies in aqueous media through shielding and cooperative effects. The dendritic assemblies can be intriguingly made responsive to external stimuli including temperature, light, solvents or guests to switch their nanostructures or supramolecular chirality. Various dendritic amphiphiles bearing peptide or aromatic motifs have been reported in supramolecular chiral assembly, and their functional applications investigated. This review summarizes the significant progresses with a particular focus on the dendritic structural effects on supramolecular chiral assembly and the stimuli-responsiveness in aqueous media.
Collapse
Affiliation(s)
- Jiatao Yan
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| |
Collapse
|
2
|
Zizzi EA, Sztandera K, Gorzkiewicz M, Buczkowski A, Apartsin E, Deriu MA, Klajnert-Maculewicz B. Molecular interactions driving the complexation of rose bengal by triazine-carbosilane dendrons. NANOSCALE 2025; 17:1433-1448. [PMID: 39620325 DOI: 10.1039/d4nr02335h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Amphiphilic dendrons or Janus dendrimers self-assembling into nanoscale vesicles offer promising avenues for drug delivery. Triazine-carbosilane dendrons have shown great potential for the intracellular delivery of rose bengal, additionally enhancing its phototoxic activity through non-covalent interactions. Thus, understanding the complexation dynamics between dendrons and photosensitizers is crucial for the development of efficient drug carriers. To address this issue, we employed computational modelling and experimental approaches to investigate the formation of stable complexes between triazine-carbosilane dendrons and rose bengal. Molecular dynamics simulations revealed rapid and stable complex formation, primarily driven by electrostatic interactions, particularly under acidic conditions. Conformational dynamics of dendrons significantly influenced complex stability and configurational entropy. Experimental validation confirmed dendron-rose bengal complexation, with pH influencing stoichiometry and thermodynamics of complexes. Overall, our study underscores the critical role of electrostatic interactions in mediating dendron-drug complexation and highlights the importance of pH in modulating complex formation dynamics.
Collapse
Affiliation(s)
- E A Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - K Sztandera
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - M Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
- Department of Molecular Medicine II, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - A Buczkowski
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz, 90-236, Poland
| | - E Apartsin
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, F-33600, France
| | - M A Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - B Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| |
Collapse
|
3
|
Roussel T, Cruz-Dubois T, Louis B, Laurini E, Ding L, Balasse L, Nail V, Dignat-George F, Giorgio S, Pricl S, Guillet B, Garrigue P, Peng L. Impact of inner hydrophobicity of dendrimer nanomicelles on biodistribution: a PET imaging study. J Mater Chem B 2024. [PMID: 39699216 DOI: 10.1039/d4tb01266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Self-assembly is a powerful strategy for building nanosystems for biomedical applications. We have recently developed small amphiphilic dendrimers capable of self-assembling into nanomicelles for tumor imaging. In this context, we studied the impact of increased hydrophobicity of the amphiphilic dendrimer on hydrophilic/hydrophobic balance and consequently on the self-assembly and subsequent biodistribution. Remarkably, despite maintaining the exact same surface chemistry, similar zeta potential, and small size, the altered and enlarged hydrophobic component within the amphiphilic dendrimer led to enhanced stability of the self-assembled nanomicelles, with prolonged circulation time and massive accumulation in the liver. This study reveals that even structural alteration within the interior of nanomicelles can dramatically impact biodistribution profiles. This finding highlights the deeper complexity of rational design for nanomedicine and the need to consider factors other than surface charge and chemistry, as well as size, all of which significantly impact the biodistribution of self-assembling nanosystems.
Collapse
Affiliation(s)
- Tom Roussel
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Twiany Cruz-Dubois
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Beatrice Louis
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
| | - Ling Ding
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Laure Balasse
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Vincent Nail
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | | | - Suzanne Giorgio
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-136, Poland
| | - Benjamin Guillet
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Philippe Garrigue
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| |
Collapse
|
4
|
Edr A, Wrobel D, Krupková A, Št′astná LČ, Apartsin E, Hympánová M, Marek J, Malý J, Malý M, Strašák T. Adaptive Synthesis, Supramolecular Behavior, and Biological Properties of Amphiphilic Carbosilane-Phosphonium Dendrons with Tunable Structure. Biomacromolecules 2024; 25:7799-7813. [PMID: 39526947 PMCID: PMC11632778 DOI: 10.1021/acs.biomac.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Here, we present a modular synthesis as well as physicochemical and biological evaluation of a new series of amphiphilic dendrons carrying triphenylphosphonium groups at their periphery. Within the series, the size and mutual balance of lipophilic and hydrophilic domains are systematically varied, changing the dendron shape from cylindrical to conical. In physiological solution, the dendrons exhibit very low critical micelle concentrations (2.6-4.9 μM) and form stable and uniform micelles 6-12 nm in diameter, depending on dendron shape; the results correlate well with molecular dynamics simulations. The compounds show relatively high cytotoxicity (IC50 1.2-21.0 μM) associated with micelle formation and inversely related to the size of assembled particles. Depending on their shape, the dendrons show promising results in terms of dendriplex formation and antibacterial activity. In addition to simple amphiphilic dendrons, a fluorescently labeled analogue was also prepared and utilized as an additive visualizing the dendron's cellular uptake.
Collapse
Affiliation(s)
- Antonín Edr
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Dominika Wrobel
- Centre
for Nanomaterials and Biotechnology Faculty of Science, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, 400 96 Ústí nad Labem, Czech
Republic
| | - Alena Krupková
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Lucie Červenková Št′astná
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Evgeny Apartsin
- Université
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Michaela Hympánová
- Biomedical
Research Centre, University Hospital Hradec
Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Jan Marek
- Biomedical
Research Centre, University Hospital Hradec
Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
- Department
of Epidemiology, Military Faculty of Medicine, University of Defence, Třebešská 1575, 500 05 Hradec Králové, Czech Republic
| | - Jan Malý
- Centre
for Nanomaterials and Biotechnology Faculty of Science, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, 400 96 Ústí nad Labem, Czech
Republic
| | - Marek Malý
- Department
of Physics, University of Jan Evangelista
Purkyně in Ústí nad Labem, 400 96 Ústí nad
Labem, Czech Republic
| | - Tomáš Strašák
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| |
Collapse
|
5
|
Alami O, Laurent R, Tassé M, Coppel Y, Bignon J, El Kazzouli S, Majoral JP, El Brahmi N, Caminade AM. "Click" Chemistry for the Functionalization of Graphene Oxide with Phosphorus Dendrons: Synthesis, Characterization and Preliminary Biological Properties. Chemistry 2023; 29:e202302198. [PMID: 37650869 DOI: 10.1002/chem.202302198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
Two families of phosphorhydrazone dendrons having either an azide or an alkyne linked to the core and diverse types of pyridine derivatives as terminal functions have been synthesized and characterized. These dendrons were grafted via click reaction to graphene oxide (GO) functionalized with either alkyne or azide functions, respectively. The resulting modified-GO and GO-dendrons materials have been characterized by Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), and Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) analyses. In addition, the free dendrons and the dendrons grafted to GO were tested toward cancerous (HCT116) and non-cancerous (RPE1) cell lines.
Collapse
Affiliation(s)
- Omar Alami
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF), Route de Meknes, 30000, Fez, Morocco
| | - Régis Laurent
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Jérôme Bignon
- Plateforme CIBI, ICSN, CNRS, Centre de Recherche de Gif, Bâtiment 27, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF), Route de Meknes, 30000, Fez, Morocco
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF), Route de Meknes, 30000, Fez, Morocco
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
6
|
Raju L, Javan Nikkhah S, K M, Vandichel M, Eswaran R. Anticancer Potential of Dendritic Poly(aryl ether)-Substituted Polypyridyl Ligand-Based Ruthenium(II) Coordination Entities. ACS APPLIED BIO MATERIALS 2023; 6:4226-4239. [PMID: 37782900 DOI: 10.1021/acsabm.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
This paper studies the anticancer potency of dendritic poly(aryl ether)-substituted polypyridyl ligand-based ruthenium(II) coordination entities. The dendritic coordination entities were successfully designed, synthesized, and characterized by different spectral methods such as Fourier transform infrared (FTIR), 1H and 13C- NMR, and mass spectrometry. Further, to understand the structure and solvation behavior of the coordination entities, we performed all-atom molecular dynamics (MD) simulations. The behavior, configuration, and size of the coordination entities in DMSO and water were studied by calculating the radius of gyration (Rg) and solvent-accessible surface area (SASA). The MTT assay was used to assess the in vitro cytotoxicity of all of the coordination entities against cancerous A549 (lung cancer cells), MDA MB 231 (breast cancer cells), and HepG2 (liver cancer cells) and was found to be good with comparable IC50 values with respect to the standard drug cisplatin. The coordination entities exhibited dose dependence, and the highest activity was shown against HepG2 cell lines in comparison to the other cancer cell lines. In addition, fluorescence staining studies, such as AO/EB, DAPI, and cell death analysis by PI staining, were performed on the coordination entities to understand the apoptosis mechanism. Furthermore, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) assays confirmed apoptosis in cancer cells via the mitochondrial pathway. The DNA fragmentation assay was done followed by molecular docking analysis with DNA executed to strengthen and support the experimental observations.
Collapse
Affiliation(s)
- Liju Raju
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Tambaram East, Chennai 600059, Tamilnadu, India
| | - Sousa Javan Nikkhah
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - MosaChristas K
- Department of Plant Biology and Biotechnology, Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous), University of Madras, Chennai 600034, India
| | - Matthias Vandichel
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Rajkumar Eswaran
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Tambaram East, Chennai 600059, Tamilnadu, India
| |
Collapse
|
7
|
Kisakova LA, Apartsin EK, Nizolenko LF, Karpenko LI. Dendrimer-Mediated Delivery of DNA and RNA Vaccines. Pharmaceutics 2023; 15:pharmaceutics15041106. [PMID: 37111593 PMCID: PMC10145063 DOI: 10.3390/pharmaceutics15041106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. Nucleic acid-based vaccines have a number of advantages, such as safety, efficacy, and low cost. They are potentially faster to develop, cheaper to produce, and easier to store and transport. A crucial step in the technology of DNA or RNA vaccines is choosing an efficient delivery method. Nucleic acid delivery using liposomes is the most popular approach today, but this method has certain disadvantages. Therefore, studies are actively underway to develop various alternative delivery methods, among which synthetic cationic polymers such as dendrimers are very attractive. Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. The biosafety of some dendrimers has been evaluated in several clinical trials presented in this review. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. This review summarizes the literature data on the development of dendrimer-based delivery systems for DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Evgeny K. Apartsin
- CBMN, UMR 5248, CNRS, Bordeaux INP, University Bordeaux, F-33600 Pessac, France
| | - Lily F. Nizolenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| |
Collapse
|
8
|
Guo Z, Bai G, Zhao W, Yang L, Du T, Zhuo K, Wang J, Wang Y. Activation and Inhibition of Isomerization of a Cationic Azobenzene Surfactant in the Large Void Space of Polyglycerol Dendron Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4015-4025. [PMID: 36897316 DOI: 10.1021/acs.langmuir.2c03373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Owing to the unique geometric structure of dendritic amphiphiles with voluminous dendrons, their micelles can harbor a large void space, which provides a new research focus and approach for micellar functionalization. In this work, we used the void space to construct a UV responsive micelle system of the mixed dendritic amphiphile (C12-(G3)2) and cationic azobenzene surfactant (C4AzoTAB). The synthesized C12-(G3)2 that possesses double third generation polyglycerol (PG) dendrons and a single alkyl chain is expected to highlight the large void space within the inside of the micelles. Thus, the aims of this work are to achieve the isomerization of C4AzoTAB in situ and to deeply understand the intermolecular interaction in the mixed micelles. The effect of the large void room with a wall decorated with the ether oxygen atoms on the isomerization of C4AzoTAB was studied by isomerization kinetics, conductivity measurements, isothermal titration calorimetry (ITC), and 1H NMR and 2D NOESY spectroscopies. The isomerization behavior of C4AzoTAB in C12-(G3)2 micelles was presented in terms of its kinetic constant, counterionic association, interaction enthalpy, and position and orientation of C4AzoTAB. The results of NMR and conductivity show that the quaternary ammonium group of C4AzoTAB situates on the surface of the mixed micelles with C12-(G3)2 both before and after UV-irradiation, while the position of azobenzene group in C12-(G3)2 micelles depends on its conformation. The C12-(G3)2 micelles can inhibit the UV response of the trans-isomer and activate the thermal relaxation of the cis-isomer, which has a potential application in the field of light-controlled smart nanocarriers.
Collapse
Affiliation(s)
- Zhijun Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wenqi Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ling Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tingru Du
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yujie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
9
|
Knauer N, Meschaninova M, Muhammad S, Hänggi D, Majoral JP, Kahlert UD, Kozlov V, Apartsin EK. Effects of Dendrimer-microRNA Nanoformulations against Glioblastoma Stem Cells. Pharmaceutics 2023; 15:pharmaceutics15030968. [PMID: 36986829 PMCID: PMC10056969 DOI: 10.3390/pharmaceutics15030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Glioblastoma is a rapidly progressing tumor quite resistant to conventional treatment. These features are currently assigned to a self-sustaining population of glioblastoma stem cells. Anti-tumor stem cell therapy calls for a new means of treatment. In particular, microRNA-based treatment is a solution, which in turn requires specific carriers for intracellular delivery of functional oligonucleotides. Herein, we report a preclinical in vitro validation of antitumor activity of nanoformulations containing antitumor microRNA miR-34a and microRNA-21 synthetic inhibitor and polycationic phosphorus and carbosilane dendrimers. The testing was carried out in a panel of glioblastoma and glioma cell lines, glioblastoma stem-like cells and induced pluripotent stem cells. We have shown dendrimer-microRNA nanoformulations to induce cell death in a controllable manner, with cytotoxic effects being more pronounced in tumor cells than in non-tumor stem cells. Furthermore, nanoformulations affected the expression of proteins responsible for interactions between the tumor and its immune microenvironment: surface markers (PD-L1, TIM3, CD47) and IL-10. Our findings evidence the potential of dendrimer-based therapeutic constructions for the anti-tumor stem cell therapy worth further investigation.
Collapse
Affiliation(s)
- Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariya Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Sajjad Muhammad
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, CEDEX 04, 31077 Toulouse, France
| | - Ulf Dietrich Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular-, and Transplant-Surgery, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Evgeny K. Apartsin
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
- Correspondence:
| |
Collapse
|
10
|
Effects of Cationic Dendrimers and Their Complexes with microRNAs on Immunocompetent Cells. Pharmaceutics 2022; 15:pharmaceutics15010148. [PMID: 36678776 PMCID: PMC9862986 DOI: 10.3390/pharmaceutics15010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Short regulatory oligonucleotides are considered prospective tools for immunotherapy. However, they require an adequate carrier to deliver potential therapeutics into immune cells. Herein, we explore the potential of polycationic dendrimers as carriers for microRNAs in peripheral blood mononuclear cells of healthy donors. As an oligonucleotide cargo, we use a synthetic mimic and an inhibitor of miR-155, an important factor in the development and functioning of immunocompetent cells. Dendrimers bind microRNAs into low-cytotoxic polyelectrolyte complexes that are efficiently uptaken by immunocompetent cells. We have shown these complexes to affect the number of T-regulatory cells, CD14+ and CD19+ cell subpopulations in non-activated mononuclear cells. The treatment affected the expression of HLA-DR on T-cells and PD-1 expression on T- and B-lymphocytes. It also affected the production of IL-4 and IL-10, but not the perforin and granzyme B production. Our findings suggest the potential of dendrimer-mediated microRNA-155 treatment for immunotherapy, though the activity of microRNA-dendrimer constructions on distinct immune cell subsets can be further improved.
Collapse
|
11
|
Jun T, Park H, Jeon S, Ahn H, Jang WD, Lee B, Ryu DY. Apex hydrogen bonds in dendron assemblies modulate close-packed mesocrystal structures. NANOSCALE 2022; 14:16936-16943. [PMID: 36345976 DOI: 10.1039/d2nr05458b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The close-packed mesocrystal structures from soft-matter assemblies have recently received attention due to their structural similarity to atomic crystals, displaying various sphere-packing Frank-Kasper (FK) and quasicrystal structures. Herein, diverse mesocrystal structures are explored in second-generation dendrons (G2-X) designed with identical wedges, in which the terminal functionalities X = CONH2 and CH2NH2 represent two levels of the strong and weak hydrogen-bonding apexes, respectively. The cohesive interactions at the core apex, referred to as the core interactions, are effectively modulated by forming heterogeneous hydrogen bonds between these two functional units. For the dendron assemblies compositionally close to each pure component of G2-CONH2 and G2-CH2NH2, their own FK A15 and C14 phases dominate other phases, respectively. We show the existence of the wide-range FK σ including the dodecagonal quasicrystal (DDQC) phases from the dendron mixtures between G2-CONH2 and G2-CH2NH2, providing an experimental phase sequence of A15-σ-DDQC-C14 as the core interactions are alleviated. Intriguingly, the temperature dependence of particle sizes shows that the high plateau values of particle sizes are maintained equivalently until each threshold temperature (Tth), followed by a prompt decrease above the Tth. A decrease in Tth by alleviating the core interactions and its composition dependence suggest that the more size-dispersed particles, the more susceptibility to chain exchange with increasing temperature. Our results on the formation of supramolecular dendron assemblies provide a guide to understand the core-interaction-dependent mesocrystal structures toward the fundamental principle underlying the temperature dependence of their particle sizes.
Collapse
Affiliation(s)
- Taesuk Jun
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Seungbae Jeon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Hyungju Ahn
- Industry Technology Convergence Centre, Pohang Accelerator, Laboratory, 80 Jigok-ro, Nam-gu, Pohang 37673, Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
12
|
de la Mata FJ, Gómez R, Cano J, Sánchez‐Nieves J, Ortega P, Gallego SG. Carbosilane dendritic nanostructures, highly versatile platforms for pharmaceutical applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1871. [PMID: 36417901 DOI: 10.1002/wnan.1871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022]
Abstract
Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action. This article summarizes the most recent advances in the pharmaceutical applications of carbosilane dendritic molecules, from therapeutics to diagnostics and prevention tools. Dendrimers decorated with cationic, anionic, or other moieties, including metallodendrimers; supramolecular assemblies; dendronized nanoparticles and surfaces; as well as dendritic networks like hydrogels are described. The collected examples confirm the potential of carbosilane dendrimers and dendritic materials as antiviral or antibacterial agents; in therapy against cancer, neurodegenerative disease, or oxidative stress; or many other biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Javier Sánchez‐Nieves
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Sandra García Gallego
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| |
Collapse
|
13
|
In Vitro Interactions of Amphiphilic Phosphorous Dendrons with Liposomes and Exosomes—Implications for Blood Viscosity Changes. Pharmaceutics 2022; 14:pharmaceutics14081596. [PMID: 36015222 PMCID: PMC9414926 DOI: 10.3390/pharmaceutics14081596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
Drug delivery by dendron-based nanoparticles is widely studied due to their ability to encapsulate or bind different ligands. For medical purposes, it is necessary (even if not sufficient) for these nanostructures to be compatible with blood. We studied the interaction of amphiphilic dendrons with blood samples from healthy volunteers using standard laboratory methods and rheological measurements. We did not observe clinically relevant abnormalities, but we found a concentration-dependent increase in whole blood viscosity, higher in males, presumably due to the formation of aggregates. To characterize the nature of the interactions among blood components and dendrons, we performed experiments on the liposomes and exosomes as models of biological membranes. Based on results obtained using diverse biophysical methods, we conclude that the interactions were of electrostatic nature. Overall, we have confirmed a concentration-dependent effect of dendrons on membrane systems, while the effect of generation was ambiguous. At higher dendron concentrations, the structure of membranes became disturbed, and membranes were prone to forming bigger aggregates, as visualized by SEM. This might have implications for blood flow disturbances when used in vivo. We propose to introduce blood viscosity measurements in early stages of investigation as they can help to optimize drug-like properties of potential drug carriers.
Collapse
|
14
|
In Vitro Validation of the Therapeutic Potential of Dendrimer-Based Nanoformulations against Tumor Stem Cells. Int J Mol Sci 2022; 23:ijms23105691. [PMID: 35628503 PMCID: PMC9143703 DOI: 10.3390/ijms23105691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor cells with stem cell properties are considered to play major roles in promoting the development and malignant behavior of aggressive cancers. Therapeutic strategies that efficiently eradicate such tumor stem cells are of highest clinical need. Herein, we performed the validation of the polycationic phosphorus dendrimer-based approach for small interfering RNAs delivery in in vitro stem-like cells as models. As a therapeutic target, we chose Lyn, a member of the Src family kinases as an example of a prominent enzyme class widely discussed as a potent anti-cancer intervention point. Our selection is guided by our discovery that Lyn mRNA expression level in glioma, a class of brain tumors, possesses significant negative clinical predictive value, promoting its potential as a therapeutic target for future molecular-targeted treatments. We then showed that anti-Lyn siRNA, delivered into Lyn-expressing glioma cell model reduces the cell viability, a fact that was not observed in a cell model that lacks Lyn-expression. Furthermore, we have found that the dendrimer itself influences various parameters of the cells such as the expression of surface markers PD-L1, TIM-3 and CD47, targets for immune recognition and other biological processes suggested to be regulating glioblastoma cell invasion. Our findings prove the potential of dendrimer-based platforms for therapeutic applications, which might help to eradicate the population of cancer cells with augmented chemotherapy resistance. Moreover, the results further promote our functional stem cell technology as suitable component in early stage drug development.
Collapse
|
15
|
Sztandera K, Gorzkiewicz M, Bątal M, Arkhipova V, Knauer N, Sánchez-Nieves J, de la Mata FJ, Gómez R, Apartsin E, Klajnert-Maculewicz B. Triazine–Carbosilane Dendrimersomes Enhance Cellular Uptake and Phototoxic Activity of Rose Bengal in Basal Cell Skin Carcinoma Cells. Int J Nanomedicine 2022; 17:1139-1154. [PMID: 35321027 PMCID: PMC8935628 DOI: 10.2147/ijn.s352349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Background The search for new formulations for photodynamic therapy is intended to improve the outcome of skin cancer treatment using significantly reduced doses of photosensitizer, thereby avoiding side effects. The incorporation of photosensitizers into nanoassemblies is a versatile way to increase the efficiency and specificity of drug delivery into target cells. Herein, we report the loading of rose bengal into vesicle-like constructs of amphiphilic triazine-carbosilane dendrons (dendrimersomes) as well as biophysical and in vitro characterization of this novel nanosystem. Methods Using established protocol and analytical and spectroscopy techniques we were able to synthesized dendrons with strictly designed properties. Engaging biophysical methods (hydrodynamic diameter and zeta potential measurements, analysis of spectral properties, transmission electron microscopy) we confirmed assembling of our nanosystem. A set of in vitro techniques was used for determination ROS generation, (ABDA and H2DCFDA probes), cell viability (MTT assay) and cellular uptake (flow cytometry and confocal microscopy). Results Encapsulation of rose bengal inside dendrimersomes enhances cellular uptake, intracellular ROS production and concequently, the phototoxicity of this photosensitizer. Conclusion Triazine-carbosilane dendrimersomes show high capacity as drug carriers for anticancer photodynamic therapy.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| | - Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Mateusz Bątal
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| | - Valeria Arkhipova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Nadezhda Knauer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
- Clinic for Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Javier Sánchez-Nieves
- Departamento de Química Orgánica y Química Inorgánica, UAH-IQAR, Alcalá de Henares, 28805, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Fco Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica, UAH-IQAR, Alcalá de Henares, 28805, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, 28034, Spain
| | - Rafael Gómez
- Departamento de Química Orgánica y Química Inorgánica, UAH-IQAR, Alcalá de Henares, 28805, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, 28034, Spain
| | - Evgeny Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Laboratoire de Chimie de Coordination CNRS, Toulouse, 31077, France
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
- Correspondence: Barbara Klajnert-Maculewicz, Department of General Biophysics, Pomorska 141/143, Łódź, 90-236, Poland, Tel +48 42 635 44 29, Fax +48 42 635 4474, Email
| |
Collapse
|
16
|
Edr A, Wrobel D, Krupková A, Šťastná LČ, Cuřínová P, Novák A, Malý J, Kalasová J, Malý J, Malý M, Strašák T. Adaptive Synthesis of Functional Amphiphilic Dendrons as a Novel Approach to Artificial Supramolecular Objects. Int J Mol Sci 2022; 23:ijms23042114. [PMID: 35216229 PMCID: PMC8877797 DOI: 10.3390/ijms23042114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Supramolecular structures, such as micelles, liposomes, polymerosomes or dendrimerosomes, are widely studied and used as drug delivery systems. The behavior of amphiphilic building blocks strongly depends on their spatial distribution and shape of polar and nonpolar component. This report is focused on the development of new versatile synthetic protocols for amphiphilic carbosilane dendrons (amp-CS-DDNs) capable of self-assembly to regular micelles and other supramolecular objects. The presented strategy enables the fine modification of amphiphilic structure in several ways and also enables the facile connection of a desired functionality. DLS experiments demonstrated correlations between structural parameters of amp-CS-DDNs and the size of formed nanoparticles. For detailed information about the organization and spatial distribution of amp-CS-DDNs assemblies, computer simulation models were studied by using molecular dynamics in explicit water.
Collapse
Affiliation(s)
- Antonín Edr
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Dominika Wrobel
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Alena Krupková
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Aleš Novák
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Jan Malý
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16828 Prague 6, Czech Republic; (J.M.); (J.K.)
| | - Jitka Kalasová
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16828 Prague 6, Czech Republic; (J.M.); (J.K.)
| | - Jan Malý
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Marek Malý
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
- Correspondence: (M.M.); (T.S.)
| | - Tomáš Strašák
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
- Correspondence: (M.M.); (T.S.)
| |
Collapse
|
17
|
Amphiphilic Triazine-Phosphorus Metallodendrons Possessing Anti-Cancer Stem Cell Activity. Pharmaceutics 2022; 14:pharmaceutics14020393. [PMID: 35214126 PMCID: PMC8880151 DOI: 10.3390/pharmaceutics14020393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Dendritic molecules bearing metal complexes in their structure (metallodendrimers and metallodendrons) are considered prospective therapeutic entities. In particular, metallodendrons raise interest as antitumor agents for the treatment of poorly curable or drug-resistant tumors. Herein, we have synthesized amphiphilic triazine-phosphorus dendrons bearing multiple copper (II) or gold (III) complexes on the periphery and a branched hydrophobic fragment at the focal point. Due to their amphiphilic nature, metallodendrons formed single micelles (mean diameter ~9 nm) or multi-micellar aggregates (mean diameter ~60 nm) in a water solution. We have tested the antitumor activity of amphiphilic metallodendrons towards glioblastoma, a malignant brain tumor with a notoriously high level of therapy resistance, as a model disease. The metallodendrons exhibit higher cytotoxic activity towards glioblastoma stem cells (BTSC233, JHH520, NCH644, and SF188 cell lines) and U87 glioblastoma cells (IC50 was 3–6 µM for copper-containing dendron and 11–15 µM for gold-containing dendron) in comparison with temozolomide (IC50 >100 µM)—the clinical standard of care for glioblastoma. Our findings show the potential of metallodendron-based nanoformulations as antitumor entities.
Collapse
|
18
|
Apartsin E, Venyaminova A, Majoral JP, Caminade AM. Dendriplex-Impregnated Hydrogels With Programmed Release Rate. Front Chem 2022; 9:780608. [PMID: 35071182 PMCID: PMC8766751 DOI: 10.3389/fchem.2021.780608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Hydrogels are biocompatible matrices for local delivery of nucleic acids; however, functional dopants are required to provide efficient delivery into cells. In particular, dendrimers, known as robust nucleic acid carriers, can be used as dopants. Herein, we report the first example of impregnating neutral hydrogels with siRNA-dendrimer complexes. The surface chemistry of dendrimers allows adjusting the release rate of siRNA-containing complexes. This methodology can bring new materials for biomedical applications.
Collapse
Affiliation(s)
- Evgeny Apartsin
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.,Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
19
|
Yoshida M, Hirao T, Haino T. Self-assembly of neutral platinum complexes controlled by thermal inputs. Chem Commun (Camb) 2022; 58:8356-8359. [DOI: 10.1039/d2cc02571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we describe the self-assembly behavior of neutral platinum complexes in toluene. The platinum complexes were seen to form two different types of assemblies depending on the preparation...
Collapse
|