1
|
Fan Q, Shang J, Yuan X, Zhang Z, Sha J. Emerging Liquid-Based Memristive Devices for Neuromorphic Computation. SMALL METHODS 2025:e2402218. [PMID: 40099617 DOI: 10.1002/smtd.202402218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/04/2025] [Indexed: 03/20/2025]
Abstract
To mimic the neural functions of the human brain, developing hardware with natural similarities to the human nervous system is crucial for realizing neuromorphic computing architectures. Owing to their capability to emulate artificial neurons and synapses, memristors are widely regarded as a leading candidate for achieving neuromorphic computing. However, most current memristor devices are solid-state. In contrast, biological nervous systems operate within an aqueous environment, and the human brain accomplishes intelligent behaviors such as information generation, transmission, and memory by regulating ion transport in neuronal cells. To achieve computing systems that are more analogous to biological systems and more energy-efficient, memristor devices based on liquid environments are developed. In contrast to traditional solid-state memristors, liquid-based memristors possess advantages such as anti-interference, low energy consumption, and low heat generation. Simultaneously, they demonstrate excellent biocompatibility, rendering them an ideal option for the next generation of artificial intelligence systems. Numerous experimental demonstrations of liquid-based memristors are reported, showcasing their unique memristive properties and novel neuromorphic functionalities. This review focuses on the recent developments in liquid-based memristors, discussing their operating mechanisms, structures, and functional characteristics. Additionally, the potential applications and development directions of liquid-based memristors in neuromorphic computing systems are proposed.
Collapse
Affiliation(s)
- Qinyang Fan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Jianyu Shang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiaoxuan Yuan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhenyu Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
2
|
Espejo J, Zellmann-Parrotta CO, Sarkar D, Che A, Michaelis VK, Williams VE, Ling CC. Unprecedented Cubic Mesomorphic Behaviour of Crown-Ether Functionalized Amphiphilic Cyclodextrins. Chemistry 2024; 30:e202403232. [PMID: 39382344 DOI: 10.1002/chem.202403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Amphiphilic supramolecular materials based on biodegradable cyclodextrins (CDs) have been known to self-assemble into different types of thermotropic liquid crystals, including smectic and hexagonal columnar mesophases. Previous studies on amphiphilic CDs bearing 14 aliphatic chains at the secondary face and 7 oligoethylene glycol (OEG) chains at the primary face showed that the stability of the mesophase can be rationally tuned through implementation of terminal functional groups to the OEG chains. Here, we report the syntheses of first examples of crown ether-functionalized amphiphilic cyclodextrins that unexpectedly form thermotropic bicontinuous cubic phases. This constitutes the first reported examples of cyclodextrins forming such phases, which are potentially capable of 3D ion transport. Lithium composites were made to assess lithium conduction in the material. XRD revealed the added lithium salt destabilizes the cubic phase in favour of the smectic phase. Solid-state NMR studies showed that these materials conduct lithium ions with a very low activation energy.
Collapse
Affiliation(s)
- Jayar Espejo
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | | | - Diganta Sarkar
- Department of Chemistry, University of Alberta, 116 St and 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Austin Che
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, 116 St and 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Vance E Williams
- Department of Chemistry, Simon Fraser University, 8888 University Dr W, Burnaby, BC, V5A 1S6, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
3
|
Peng H, Fang X, Huang W, Liu W, Yang Y, Zhou Q, Li Y. Fabrication of Single-Ion Conductors Based on Liquid Crystal Polymer Network for Quasi-Solid-State Lithium Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44350-44360. [PMID: 39145510 DOI: 10.1021/acsami.4c11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Single-ion conductive polymer electrolytes can improve the safety of lithium ion batteries (LIBs) by increasing the lithium transference number (tLi+) and avoiding the growth of lithium dendrites. Meanwhile, the self-assembled ordered structure of liquid crystal polymer networks (LCNs) can provide specific channels for the ordered transport of Li ions. Herein, single-ion conductive nematic and cholesteric LCN electrolyte membranes (denoted as NLCN-Li and CLCN-Li) were successfully prepared. NLCN-Li was then coated on commercial Celgard 2325 while CLCN-Li was coated on poly(vinylidene fluoride-hexafluoropropylene) film, coupled with plasticizer, to make NLCN-Li/Cel and CLCN-Li/Pv quasi-solid-state electrolyte membranes, respectively. Their electrochemical properties were evaluated, and it was found that they possessed benign thermal stability and electrolyte/electrode compatibility, high tLi+ up to 0.98 and high electrochemical stability window up to 5.2 V. A small amount (0.5M) of extra Li salt added to the plasticizer could improve the ion conductivity from 1.79 × 10-5 to 5.04 × 10-4 S cm-1, while the tLi+ remained 0.85. The assembled LFP|Li batteries also exhibited excellent cycling and rate performances. The orderliness of the LCN layer played an important role in the distribution and movement of Li ions, thereby affecting the Li deposition and growth of Li dendrites. As the first report of nematic and cholesteric LCN single-ion conductors, this work sheds light on the design and fabrication of ordered quasi-solid-state electrolytes for high-performance and safe LIBs.
Collapse
Affiliation(s)
- Hui Peng
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xin Fang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Wen Huang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Wei Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Qun Zhou
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
4
|
Park BK, Kim HS, Han SA, Leem HJ, Kim T, Kwon YG, Yang JH, Mun J, Yu J, Park MS, Kim JH, Kim KJ. Bi-Morphological Form of SiO 2 on a Separator for Modulating Li-Ion Solvation and Self-Scavenging of Li Dendrites in Li Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6923-6932. [PMID: 36715535 DOI: 10.1021/acsami.2c20651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The lithium (Li) metal anode is highly desirable for high-energy density batteries. During prolonged Li plating-stripping, however, dendritic Li formation and growth are probabilistically high, allowing physical contact between the two electrodes, which results in a cell short-circuit. Engineering the separator is a promising and facile way to suppress dendritic growth. When a conventional coating approach is applied, it usually sacrifices the bare separator structure and severely increases the thickness, ultimately decreasing the volumetric density. Herein, we introduce dielectric silicon oxide with the feature of bi-morphological form, i.e., backbone-covered and backbone-anchored, onto the conventional polyethylene separator without any volumetric change. These functionally vary the Li+ transference number and the ionic conductivity so as to modulate Li-ion solvation and self-scavenging of Li dendrites. The proposed separator paves the way to maximizing the full cell performance of Li/NCM622 toward practical application.
Collapse
Affiliation(s)
- Bo Keun Park
- Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul05029, Republic of Korea
| | - Hyun-Seung Kim
- Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam13509, Republic of Korea
| | - Sang A Han
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong2500, NSW, Australia
| | - Han Jun Leem
- Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam13509, Republic of Korea
| | - Taehee Kim
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin17104, Republic of Korea
| | - Yong Gab Kwon
- Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul05029, Republic of Korea
| | - Jin Hyeok Yang
- Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul05029, Republic of Korea
| | - Junyoung Mun
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon16419, Gyeonggi-do, Republic of Korea
| | - Jisang Yu
- Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam13509, Republic of Korea
| | - Min-Sik Park
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin17104, Republic of Korea
| | - Jung Ho Kim
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong2500, NSW, Australia
| | - Ki Jae Kim
- Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul05029, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Mei J, Shang J, Zhang C, Qi D, Kou L, Wijerathne B, Hu C, Liao T, MacLeod J, Sun Z. MAX-phase Derived Tin Diselenide for 2D/2D Heterostructures with Ultralow Surface/Interface Transport Barriers toward Li-/Na-ions Storage. SMALL METHODS 2022; 6:e2200658. [PMID: 35802910 DOI: 10.1002/smtd.202200658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
2D tin diselenide and its derived 2D heterostructures have delivered promising potentials in various applications ranging from electronics to energy storage devices. The major challenges associated with large-scale fabrication of SnSe2 crystals, however, have hindered its engineering applications. Herein, a tin-extraction synthetic method is proposed for producing large-size SnSe2 bulk crystals. In a typical synthesis, a Sn-containing MAX phase (V2 SnC) and a Se source are heat-treated under a reducing atmosphere, by which Sn is extracted from the V2 SnC phase as a rectified Sn source to form SnSe2 crystals in the cold zone. After the following liquid exfoliation, the obtained 2D SnSe2 nanosheets have a lateral size of a few centimeters and an atomic thickness. Furthermore, by coupling with 2D graphene to form 2D/2D SnSe2 /graphene heterostructured electrodes, as validated by theoretical calculation and experimental studies, the superior Li-/Na-ion storage performance with ultralow surface/interface ion transport barriers are achieved for rechargeable Li-/Na-ion batteries. This innovative synthetic strategy opens a new avenue for the large-scale synthesis of selenides and offers more options into the practical application of emerging 2D/2D heterostructure for electrochemical energy storage.
Collapse
Affiliation(s)
- Jun Mei
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jing Shang
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Materials Science & Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Chao Zhang
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Dongchen Qi
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Liangzhi Kou
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Binodhya Wijerathne
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Chunfeng Hu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ting Liao
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jennifer MacLeod
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ziqi Sun
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|