1
|
Han X, Zhou J, Li Y, Zhao Y, Li Y, Hua Y, Dong T, Chai F. FeMo 6 integrated covalent organic frameworks: Peroxidase-mimetic colorimetric biosensors for multivariate sensing hydrogen peroxide and ascorbic acid in serum and beverages. Food Chem 2025; 479:143727. [PMID: 40073560 DOI: 10.1016/j.foodchem.2025.143727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
An efficient and readable sensor is desirable for food safety and diagnosis. Herein, a homogeneous mimicking enzyme was constructed by encapsulating polyoxometalate (NH₄)₃[FeMo₆O₁₈(OH)₆]·6H₂O (FeMo6) into the covalent organic framework (FeMo6@COF). Coordinating the spatial confinement effect of COF, FeMo6 exhibited superior peroxide-like activity to catalyze H2O2 to O2-• which achieved the "on-off" consecutive sensing of H2O2 and AA via a readable colorimetric mode, with the limit of detection (LOD) at 30 μM and 0.35 μM, respectively. A convenient smartphone assistant platform was established and realized rapid, portable, visual monitoring of AA with LOD of 0.06 μM, and satisfied recoveries with 96.88-104.65 % in human serum and 98.37-107.61 % in commercial beverages. Furthermore, a logic gate circuit was designed to illustrate the potential utilization of combining the intelligent facilities with the experiment. This strategy provides efficient, swift, convenient sensor FeMo6@COF with great potential contribution in food safety and diagnosis.
Collapse
Affiliation(s)
- Xinyu Han
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jihong Zhou
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yunjie Li
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuhan Zhao
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yanfei Li
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingjie Hua
- School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou 571158, PR China.
| | - Taowen Dong
- College of Automotive Engineering, Jilin University, Changchun 130012, China.
| | - Fang Chai
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Chen W, Wu T, Wei S, Chen Y, Shen C, Weng L. Thiourea enhanced oxidase-like activity of CeO 2/Cu xO nanozyme for fluorescence/colorimetric detection of thiourea and glutathione. Talanta 2025; 281:126868. [PMID: 39288584 DOI: 10.1016/j.talanta.2024.126868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
A novel fluorescence/colorimetric dual-mode sensor, based on enhancement of the oxidase-like activity of CeO2/CuxO nanozyme towards the oxidation of o-phenylenediamine (OPD) induced by thiourea (TU), has been proposed for TU detection. The catalytic activity enhancement on CeO2/CuxO can be attributed to the strong electron-donation ability of TU, which promoted hydroxyl radical generation and amplified OPD oxidization with enhanced dual-signal readout. By integrating a portable paper-chip and smartphone system, this CeO2/CuxO-OPD system achieved on-site visual colorimetric analysis of TU. The dual-mode sensor demonstrated high sensitivity and specificity in recognizing TU, with a detection limit (LOD) of 1.90 μM and a linear range (LR) 2.5-80 μM in fluorescent mode; as well as an LOD of 6.69 μM and an LR 10-250 μM in colorimetric mode. Furthermore, the CeO2/CuxO-TU-OPD system has been designed for dual-mode glutathione (GSH) detection with enhanced sensitivity, achieving an LOD of 0.19 μM and an LR 0.5-10 μM in fluorescent mode; as well as an LOD of 1.24 μM and an LR 1.25-25 μM in colorimetric mode. Additionally, GSH discrimination (fluorescent mode) was successfully achieved in different biological samples, showing good consistency with the standard method. The recoveries ranged from 96.8 % to 116.7 % in serum samples and from 97.3 % to 107.7 % in cell lysates, with RSDs less than 2 %. This work not only introduced a novel approach to enhance oxidase-like activity of nanozymes but also provided an efficient field-suitable tool for enhanced dual-mode response towards TU and GSH.
Collapse
Affiliation(s)
- Weiwei Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Tao Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Siyuan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yiying Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Chuang Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
3
|
Niu H, Bu H, Zhao J, Zhu Y. Metal-Organic Frameworks-Based Nanoplatforms for the Theranostic Applications of Neurological Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206575. [PMID: 36908079 DOI: 10.1002/smll.202206575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Indexed: 06/08/2023]
Abstract
Neurological diseases are the foremost cause of disability and the second leading cause of death worldwide. Owing to the special microenvironment of neural tissues and biological characteristics of neural cells, a considerable number of neurological disorders are currently incurable. In the past few years, the development of nanoplatforms based on metal-organic frameworks (MOFs) has broadened opportunities for offering sensitive diagnosis/monitoring and effective therapy of neurology-related diseases. In this article, the obstacles for neurotherapeutics, including delayed diagnosis and misdiagnosis, the existence of blood brain barrier (BBB), off-target treatment, irrepressible inflammatory storm/oxidative stress, and irreversible nerve cell death are summarized. Correspondingly, MOFs-based diagnostic/monitoring strategies such as neuroimaging and biosensors (electrochemistry, fluorometry, colorimetry, electrochemiluminescence, etc.) and MOFs-based therapeutic strategies including higher BBB permeability, targeting specific lesion sites, attenuation of neuroinflammation/oxidative stress as well as regeneration of nerve cells, are extensively highlighted for the management of neurological diseases. Finally, the challenges of the present research from perspective of clinical translation are discussed, hoping to facilitate interdisciplinary studies at the intersections between MOFs-based nanoplatforms and neurotheranostics.
Collapse
Affiliation(s)
- Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P. R. China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Chai J, Yuan L, Wang S, Li T, Wu M, Huang Z, Yin H. A series of novel Cu-based MOFs: syntheses, structural diversity, catalytic properties and mimic peroxidase activity for colorimetric detection of H 2O 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj01981g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three MOFs with three different types of Cu clusters have been synthesized. MOFs 1–3 efficiently catalyze the oxidation of cycloalkanes under mild conditions. Besides, MOFs 1–3 exhibited high peroxidase-like activity and could be applied for colorimetric detection of H2O2.
Collapse
Affiliation(s)
- Juan Chai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Luohao Yuan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shiwei Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Tong Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Mingxue Wu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zhiwei Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Hongfeng Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
5
|
Tong Z, Wang T, Cai Y, Sha JQ, Peng T. Oxygen-Powered Flower-like FeMo 6@CeO 2 Self-cascade Nanozyme: Turn-on Enhancement Fluorescence Sensor. J Mater Chem B 2022; 10:6425-6432. [DOI: 10.1039/d2tb01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme cascade reactions in organisms have sparked tremendous interest for their coupled catalysis-facilitated efficient biochemical reactions. However, multi-enzyme cascade nanozymes remain largely unpracticed. In the work, flower-like porous ceria-based integrated...
Collapse
|