1
|
Ito S, Wakiyama S, Chen H, Abekura M, Uekusa H, Ikemura R, Imai Y. Contrasting Mechanochromic Luminescence of Enantiopure and Racemic Pyrenylprolinamides: Elucidating Solid-State Excimer Orientation by Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025; 64:e202422913. [PMID: 39840484 DOI: 10.1002/anie.202422913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 01/23/2025]
Abstract
Circularly polarized luminescence (CPL) and mechanochromic luminescence (MCL) have independently made substantial progress in recent years. However, the exploration of MCL in solid-state CPL materials, which holds practical significance, is still in its infancy. Herein, we report the MCL properties of readily accessible chiral pyrenylprolinamides bearing tert-butoxycarbonyl (Boc) or 2,2,2-trichloroethoxycarbonyl (Troc) groups. Enantiopure crystals of the Boc derivative display a greater MCL wavelength shift than racemic crystals, while the Troc derivative exhibit the opposite trend. Most notably, the enantiopure crystals show mechanochromic CPL. Unlike in previous examples, where CPL is quenched upon amorphization, robust CPL spectra were observed even in the amorphous states. By applying the excimer chirality rule, we have, for the first time, acquired insights into the excited-state structures within mechanically generated amorphous states. These findings offer a novel design strategy for developing mechanochromic CPL materials, paving the way for the future advancements in this emerging field.
Collapse
Affiliation(s)
- Suguru Ito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Shin Wakiyama
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Hao Chen
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Masato Abekura
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Ryoya Ikemura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
2
|
Takaishi K, Yoshinami F, Sato Y, Ema T. Temperature-Induced Sign Inversion of Circularly Polarized Luminescence of Binaphthyl-Bridged Tetrathiapyrenophanes. Chemistry 2024:e202400866. [PMID: 38567834 DOI: 10.1002/chem.202400866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 04/30/2024]
Abstract
D2-symmetric (R)-binaphthyl-bridged pyrenophanes containing thioether bonds were synthesized. The pyrenophanes exhibited the temperature-induced sign inversion of circularly polarized luminescence (CPL) while maintaining the emission wavelength and reversibility. The Δglum value reached 0.02, and the FL quenching by heat was negligible. The sign inversion of CPL originates from the inversion of intramolecular excimer chirality associated with excitation dynamics. The two pyrenes form a kinetically trapped left-handed twist excimer at low temperatures, while they form a thermodynamically favored right-handed twist excimer at high temperatures. The thioether linkers can impart flexibility suitable for the inversion of chirality of the excimers.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Fumiya Yoshinami
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Yoshihiro Sato
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
3
|
Yoshida K, Kuwahara Y, Hano N, Horie Y, Takafuji M, Ryu N, Nagaoka S, Oda R, Ihara H. Chiral H-aggregation-induced large stokes shift with CPL generation assisted by α-helical poly(L-lysine) substructure. Chirality 2023. [PMID: 36943171 DOI: 10.1002/chir.23553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/23/2023]
Abstract
Fluorescent materials with large Stokes shifts have significant potential for use in optical applications. Typically, a synthetic design strategy is utilized for this purpose. In this study, we demonstrated a novel method by binding a chiral template to a nonchiral fluorescent agent without chemical modification. Specifically, α-helical poly(L-lysine) was employed as the chiral template, which interacted with a disulfonic fluorescent dye, such as NK2751. The dye caused excimer luminescence by inducing the formation of a chirally H-aggregated dimer only when poly(L-lysine) was in an α-helical shape. The result was a Stokes shift of 230 nm. Similar effects were not observed when the chiral template was in a random coil condition and the Stokes shift was less than 40 nm. These findings imply that H-aggregated dimerization, which often results in quenching, permits the electronic transitions necessary for fluorescence events by the formation of the chirally twisted state. In addition, we introduce for the first time the generation of circularly polarized luminescence using the chirality induction phenomena in a dye supported by poly(L-lysine).
Collapse
Affiliation(s)
- Kyohei Yoshida
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
| | - Nanami Hano
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, Pessac, France
| | - Yumi Horie
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
| | - Naoya Ryu
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Shoji Nagaoka
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Reiko Oda
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, Pessac, France
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
- Okinawa College, National Institute of Technology, Okinawa, Japan
| |
Collapse
|
4
|
Sonet D, Cayla M, Méreau R, Morvan E, Lacoudre A, Vanthuyne N, Albalat M, Bassani DM, Scalabre A, Pouget E, Bibal B. Chiral Anthranyl Trifluoromethyl Alcohols: Structures, Oxidative Dearomatization and Chiroptical Properties. Chemistry 2022; 28:e202202695. [PMID: 36316221 DOI: 10.1002/chem.202202695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 11/05/2022]
Abstract
Chiral trifluoromethyl alcohol groups were introduced at the hindered ortho positions of 9,10-diphenylanthracenes to investigate their effects on the physical properties and reactivity towards oxidative dearomatization. In such compact structures, the position in different quadrants and the preferred orientation of the -CH(OH)CF3 groups were determined by the relative and absolute configurations of each stereoisomer, respectively. As a consequence, the stereochemistry governs the organization of the H-bonded molecules in single crystals (homochiral dimers vs ribbon), whereas in chlorinated solvents, they all behave as discrete compounds. Concerning their reactivity, the stereospecific dearomative oxidation of these molecules leads to 9,10-bis-spiro-isobenzofuran-anthracenes, when using organic single-electron transfer oxidants. The chiroptical properties of the alcohols and the corresponding dearomatized products were compared and showed an important modulation of the intensity.
Collapse
Affiliation(s)
- Dorian Sonet
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Mattéo Cayla
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Raphaël Méreau
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US001, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Aline Lacoudre
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Nicolas Vanthuyne
- Centrale Marseille, iSm2, Aix-Marseille Université, CNRS, 52 avenue Escadrille Normandie Niemen, 13013, Marseille, France
| | - Muriel Albalat
- Centrale Marseille, iSm2, Aix-Marseille Université, CNRS, 52 avenue Escadrille Normandie Niemen, 13013, Marseille, France
| | - Dario M Bassani
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Antoine Scalabre
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Brigitte Bibal
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| |
Collapse
|
5
|
Balzano F, Iuliano A, Uccello-Barretta G, Zullo V. Renewable Resources for Enantiodiscrimination: Chiral Solvating Agents for NMR Spectroscopy from Isomannide and Isosorbide. J Org Chem 2022; 87:12698-12709. [PMID: 36075050 PMCID: PMC9552179 DOI: 10.1021/acs.joc.2c01244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A new family of chiral selectors was synthesized in a
single synthetic
step with yields up to 84% starting from isomannide and isosorbide.
Mono- or disubstituted carbamate derivatives were obtained by reacting
the isohexides with electron-donating arylisocyanate (3,5-dimethylphenyl-
or 3,5-dimethoxyphenyl-) and electron-withdrawing arylisocyanate (3,5-bis(trifluoromethyl)phenyl-)
groups to test opposite electronic effects on enantiodifferentiation.
Deeper chiral pockets and derivatives with more acidic protons were
obtained by derivatization with 1-naphthylisocyanate and p-toluenesulfonylisocyanate, respectively. All compounds were
tested as chiral solvating agents (CSAs) in 1H NMR experiments
with rac-N-3,5-dinitrobenzoylphenylglycine
methyl ester in order to determine the influence of different structural
features on the enantiodiscrimination capabilities. Some selected
compounds were tested with other racemic analytes, still leading to
enantiodiscrimination. The enantiodiscrimination conditions were then
optimized for the best CSA/analyte couple. Finally, a 2D- and 1D-NMR
study was performed employing the best performing CSA with the two
enantiomers of the selected analyte, aiming to determine the enantiodiscrimination
mechanism, the stoichiometry of interaction, and the complexation
constant.
Collapse
Affiliation(s)
- Federica Balzano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Gloria Uccello-Barretta
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| |
Collapse
|
6
|
Zullo V, Grecchi S, Araneo S, Galli M, Arnaboldi S, Micheli L, Mezzetta A, Guazzelli L, Iuliano A, Mussini PR. Electroactive bio-based chiral tweezers:attractive selectors for enantioselective voltammetry. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Zhang Y, Li H, Geng Z, Zheng W, Quan Y, Cheng Y. Dynamically stable and amplified circularly polarized excimer emission regulated by solvation of chiral co-assembly process. Nat Commun 2022; 13:4905. [PMID: 35988006 PMCID: PMC9392786 DOI: 10.1038/s41467-022-32714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Chiral supramolecular assembly has been assigned to be one of the most favorable strategies for the development of excellent circularly polarized luminescent (CPL)-active materials. Herein, we report our study of an achiral boron-containing pyrene (Py)-based chromophore (PyBO) as a circularly polarized excimer emission (CPEE) dye induced by chiral co-assemblies containing chiral binaphthyl-based enantiomers (R/S-M). Chiral co-assembly R/S-M-(PyBO)4 fresh film spin-coated from toluene solution can exhibit orderly nanofibers and strong green CPEE (λem = 512 nm, gem = ±0.45, ΦFL = 51.2 %) resulting from an achiral PyBO excimer. In contrast, only a very weak blue CPL was observed (λem = 461 nm, gem = ± 0.0125, ΦFL = 19.0 %) after 187 h due to PyBO monomer emission as spherulite growth. Interestingly, this kind of chiral co-assembly R-M-(PyBO)4-T film from tetrahydrofuran (THF) solution retains uniform morphology and affords the most stable and strongest CPEE performance (λem = 512 nm, gem = + 0.62, ΦFL = 53.3 %) after 10 days.
Collapse
Affiliation(s)
- Yuxia Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhongxing Geng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenhua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yixiang Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Zullo V, Iuliano A, Pescitelli G, Zinna F. Tunable Excimer Circularly Polarized Luminescence in Isohexide Derivatives from Renewable Resources. Chemistry 2022; 28:e202104226. [PMID: 34982485 PMCID: PMC9303411 DOI: 10.1002/chem.202104226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/30/2022]
Abstract
Organic compounds showing circularly polarized luminescence (CPL) are at the forefront of novel applications and technologies. Here we show the synthesis and chiroptical properties of pyrene and perylene derivatives of inexpensive chiral scaffolds: isomannide and isosorbide. Low‐intensity ECD spectra were obtained, suggesting the absence of chromophore interaction in the ground state, except in the case of isomannide bis‐perylenecarboxylate, whose ECD spectrum showed a positive exciton couplet. All isomannide derivatives, with the only exception of the one containing a pyrenecarboxylate and a perylenecarboxylate, exhibited excimer CPL spectra, whereas isosorbide derivatives did not show any CPL. Isomannide derivatives bearing two pyrenecarboxylate or two pyrenylacetate groups showed positive CPL emission with dissymmetry factors up to 10−2, which depends on the conformational freedom of the appended units. The CPL sign, Stokes shift and order of magnitude of dissymmetry factor were reproduced by excited‐state calculations on a representative compound. Interestingly, the mixed derivative containing pyrenic units with different spacing from the isomannide scaffold showed an oppositely signed excimer band with respect to the homo‐substituted derivatives.
Collapse
Affiliation(s)
- Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| |
Collapse
|