Averdunk A, Hasenbeck M, Müller T, Becker J, Gellrich U. 1,2-Carboboration of Arylallenes by In Situ Generated Alkenylboranes for the Synthesis of 1,4-Dienes.
Chemistry 2022;
28:e202200470. [PMID:
35348257 PMCID:
PMC9325554 DOI:
10.1002/chem.202200470]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 12/26/2022]
Abstract
We herein report a novel method for the coupling of unactivated alkynes and arylallenes, which relies on an unprecedented and regioselective 1,2-carboboration of the allene by an alkenylborane. The alkenylborane is conveniently prepared in situ by hydroboration of an alkyne with Piers' borane, i. e., HB(C6 F5 )2 . The boryl-substituted 1,4-dienes that are formed by this carboboration are well-suited for a subsequent Suzuki-Miyaura coupling with aryl iodides. This allowed us to develop a three-step, one-pot protocol for the synthesis of aryl-substituted 1,4-dienes. The generality of the reaction was demonstrated by the synthesis of twenty dienes with modular variations of all three reaction partners. The mechanism of the new 1,2-carboboration was investigated using dispersion corrected double-hybrid DFT computations that allowed us to rationalize the chemo- and regioselectivity of this key step.
Collapse