1
|
Yuan M, Yan R, Zhao Z, Wen Q, Xie X, Adeli M, Li S, Cheng C. Vanadium single-atoms coordinated artificial peroxidases as biocatalyst-linked immunosorbent assay for highly-sensitive carcinoembryonic antigen immunoassay. Biomaterials 2025; 316:123008. [PMID: 39708776 DOI: 10.1016/j.biomaterials.2024.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
In medical and biomedical fields, enzyme-mimetic nanomaterials have garnered significant interest as efficacious signal enhancers for biocatalyst-linked immunosorbent assays (BLISA). Despite the burgeoning enthusiasm, engineering artificial biocatalysts that exhibit both exceptional catalytic proficiency and pronounced colorimetric signal output remains a formidable challenge. Inspired by the heme structures and biocatalytic activities of horseradish peroxidase, we introduce the synthesis of vanadium single-atoms (SAV) coordinated artificial peroxidases as BLISA for highly sensitive and selective carcinoembryonic antigen (CEA) immunoassay. Our synthesized SAV exhibits peroxidase (POD)-like activity that is both efficacious and highly specific, surpassing the performance of many other single-atom-structured materials. The SAV-linked immunoassay demonstrates an ultrasensitive response to the target antigen (CEA), with a linear detection range spanning 0.03-10 ng/mL and an impressively low detection limit of 0.335 ng/mL. This straightforward and robust immunoassay technique not only achieves superior signal amplification compared to traditional natural enzymes but also boasts high precision, commendable reproducibility, and remarkable specificity, aligning closely with conventional enzyme-linked immunosorbent assay for CEA detection in serum samples. This study offers a blueprint for designing artificial peroxidase-based colorimetric nanosystems, promoting the evolution of ultrasensitive BLISA applications for the early diagnosis and intervention of cancer.
Collapse
Affiliation(s)
- Minjia Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinlong Wen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Xie
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mohsen Adeli
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran; Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, 14195, Germany
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China; Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Xia J, Guo J, Li Z, Cao S, Tang Y, Zhao H, Ye D. Site-Defined High-Loading Tellurium Single-Atom Nanozymes Anchored on Checkerboard-Patterned Graphyne for Sensor Array Construction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501797. [PMID: 40261036 DOI: 10.1002/smll.202501797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/27/2025] [Indexed: 04/24/2025]
Abstract
Single-atom nanozymes exhibit unique enzymatic activity due to their active centers, which resemble those of natural metalloenzymes. The design of the anchoring sites of single-atom active centers is an important factor that affects the loading capacity and catalytic activity. Herein, para-nitrogen-doped graphyne with diamond cavity is used as support, and single-atom tellurium atoms are then anchored in the nitrogen-containing graphyne cavities, akin to chess pieces placed on a chessboard grid. Due to the pre-designed regular anchoring sites, the site-defined tellurium single-atom nanozyme (Te SAN) achieves a high Te loading of 19.21 wt.%. Therefore, Te SAN shows good peroxidase-like activity. To explain the enhanced peroxidase-like activity, density functional theory calculations are performed and the results demonstrate that Te doping enhances catalytic activity by lower Gibbs free energy barrier for formation of •OH, a key intermediate in peroxidase-like activity. Finally, based on the inhibitory effect of bisphenols on nanozyme activity, the Te SAN-based sensor array successfully identifies five bisphenols, holding potential for on-site food safety monitoring. The design of the anchoring sites of single atoms in this work provides new ideas for precisely controlling the synthesis of nanozymes, exploring their action mechanisms, and enhancing their activities.
Collapse
Affiliation(s)
- Jianing Xia
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Guo
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhen Li
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Saichao Cao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Ya Tang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
3
|
Cui Q, Zhou M, Wen Q, Li L, Xiong C, Adeli M, Cheng L, Xu X, Ren X, Cheng C. Pyridine-Bridged Covalent Organic Frameworks with Adjustable Band Gaps as Intelligent Artificial Enzymes for Light-Augmented Biocatalytic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401673. [PMID: 38721983 DOI: 10.1002/smll.202401673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Indexed: 10/01/2024]
Abstract
One of the biggest challenges in biotechnology and medical diagnostics is finding extremely sensitive and adaptable biosensors. Since metal-based enzyme-mimetic biocatalysts may lead to biosafety concerns on accumulative toxicity, it is essential to synthesize metal-free enzyme-mimics with optimal biocatalytic activity and superior selectivity. Here, the pyridine-bridged covalent organic frameworks (COFs) with specific oxidase-like (OXD-like) activities as intelligent artificial enzymes for light-augmented biocatalytic sensing of biomarkers are disclosed. Because of the adjustable bandgaps of pyridine structures on the photocatalytic properties of the pristine COF structures, the pyridine-bridged COF exhibit efficient, selective, and light-responsive OXD-like biocatalytic activity. Moreover, the pyridine-bridged COF structures show tunable and light-augmented biocatalytic detection capabilities, which outperform the recently reported state-of-the-art OXD-mimics regarding biosensing efficiency. Notably, the pyridine-bridged COF exhibits efficient and multifaceted diagnostic activity, including the extremely low limit of detection (LOD), which enables visual assays for abundant reducibility biomarkers. It is believed that this design will offer unique metal-free biocatalysts for high-sensitive and low-cost colorimetric detection and also provide new insights to create highly efficient enzyme-like COF materials via linkage-modulation strategies for future biocatalytic applications.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinlong Wen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Lin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Xiaohui Xu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Wang L, Zhang L, Chen F, Li Q, Zhu B, Tang Y, Yang Z, Cheng C, Qiu L, Ma L. Polymerized Network-Based Artificial Peroxisome Reprogramming Macrophages for Photoacoustic Imaging-Guided Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25856-25868. [PMID: 38726921 DOI: 10.1021/acsami.4c04000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Artificial peroxisomes (AP) with enzyme-mimetic catalytic activity and recruitment ability have drawn a great deal of attention in fabricating protocell systems for scavenging reactive oxygen species (ROS), modulating the inflammatory microenvironment, and reprogramming macrophages, which is of great potential in treating inflammatory diseases such as rheumatoid arthritis (RA). Herein, a macrophage membrane-cloaked Cu-coordinated polyphthalocyanine-based AP (CuAP) is prepared with a macrocyclic conjugated polymerized network and embedded Cu-single atomic active center, which mimics the catalytic activity and coordination environment of natural superoxide dismutase and catalase, possesses the inflammatory recruitment ability of macrophages, and performs photoacoustic imaging (PAI)-guided treatment. The results of both in vitro cellular and in vivo animal experiments demonstrated that the CuAP under ultrasound and microbubbles could efficiently scavenge excess ROS in cells and tissues, modulate microenvironmental inflammatory cytokines such as interleukin-1β, tumor necrosis factor-α, and arginase-1, and reprogram macrophages by polarization of M1 (proinflammatory phenotype) to M2 (anti-inflammatory phenotype). We believe this study offers a proof of concept for engineering multifaceted AP and a promising approach for a PAI-guided treatment platform for RA.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyan Zhang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanjiao Tang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Li Q, Zhao Z, Chen F, Xu X, Xu L, Cheng L, Adeli M, Luo X, Cheng C. Delocalization Engineering of Heme-Mimetic Artificial Enzymes for Augmented Reactive Oxygen Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400838. [PMID: 38372011 DOI: 10.1002/anie.202400838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Developing artificial enzymes based on organic molecules or polymers for reactive oxygen species (ROS)-related catalysis has broad applicability. Herein, inspired by porphyrin-based heme mimics, we report the synthesis of polyphthalocyanine-based conjugated polymers (Fe-PPc-AE) as a new porphyrin-evolving structure to serve as efficient and versatile artificial enzymes for augmented reactive oxygen catalysis. Owing to the structural advantages, such as enhanced π-conjugation networks and π-electron delocalization, promoted electron transfer, and unique Fe-N coordination centers, Fe-PPc-AE showed more efficient ROS-production activity in terms of Vmax and turnover numbers as compared with porphyrin-based conjugated polymers (Fe-PPor-AE), which also surpassed reported state-of-the-art artificial enzymes in their activity. More interestingly, by changing the reaction medium and substrates, Fe-PPc-AE also revealed significantly improved activity and environmental adaptivity in many other ROS-related biocatalytic processes, validating the potential of Fe-PPc-AE to replace conventional (poly)porphyrin-based heme mimics for ROS-related catalysis, biosensors, or biotherapeutics. It is suggested that this study will offer essential guidance for designing artificial enzymes based on organic molecules or polymers.
Collapse
Affiliation(s)
- Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaohui Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Macau University of Science and Technology, Macau, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Organic Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Yang D, Yuan M, Huang J, Xiang X, Pang H, Wei Q, Luo X, Cheng C, Qiu L, Ma L. Conjugated Network Supporting Highly Surface-Exposed Ru Site-Based Artificial Antioxidase for Efficiently Modulating Microenvironment and Alleviating Solar Dermatitis. ACS NANO 2024; 18:3424-3437. [PMID: 38227828 DOI: 10.1021/acsnano.3c10552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Solar dermatitis, a form of acute radiation burn that affects the skin, results from overexposure to ultraviolet B (UVB) radiation in strong sunlight. Cell damage caused by the accumulation of reactive oxygen species (ROS) produced by UVB radiation plays an important role in UVB-induced inflammation in the skin. Here, for efficiently scavenging excess ROS, modulating the microenvironment, and alleviating solar dermatitis, a π-conjugated network polyphthalocyanine supporting a highly surface-exposed Ru active site-based artificial antioxidase (HSE-PPcRu) is designed and fabricated with excellent ROS-scavenging, antioxidant, and anti-inflammatory capabilities. In photodamaged human keratinocyte cells, HSE-PPcRu could modulate mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B signaling pathways, prevent DNA damage, suppress apoptosis, inhibit pro-inflammatory cytokine secretion, and alleviate cell damage. In vivo animal experiments reveal the higher antioxidant and anti-inflammatory efficacies of HSE-PPcRu by reversing the activation of p38 and c-Jun N-terminal kinase, inhibiting expression of cyclooxygenase-2, interleukin-6, interleukin-8, and tumor necrosis factor-α. This work not only provides an idea for alleviating solar dermatitis via catalytically scavenging ROS and modulating the microenvironment but also offers a strategy to design an intelligent conjugated network-based artificial antioxidase with a highly surface-exposed active site.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minjia Yuan
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianbo Huang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xi Xiang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Houqing Pang
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Liu Q, Li H, Zhang Y, Chen W, Yu S, Chen Y. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117406. [PMID: 37839529 DOI: 10.1016/j.envres.2023.117406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
8
|
Yuan M, Li Q, Wu Z, Zhu H, Gao Y, Zhou M, Luo X, Wang M, Cheng C. Ultralow Ru Single Atoms Confined in Cerium Oxide Nanoglues for Highly-Sensitive and Robust H 2 O 2 -Related Biocatalytic Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304532. [PMID: 37649195 DOI: 10.1002/smll.202304532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Indexed: 09/01/2023]
Abstract
Exploring highly efficient, portable, and robust biocatalysts is a great challenge in colorimetric biosensors. To overcome the challenging states in creating single-atom biocatalysts, such as insufficient activity and stability, here, this work has engineered a unique CeO2 support as nanoglue to tightly anchor the Ru single-atom sites (CeO2 -Ru) with strong electronic coupling for achieving highly sensitive and robust H2 O2 -related biocatalytic diagnosis. The morphology and chemical/electronic structure analysis demonstrates that the Ru atoms are well-dispersed on CeO2 surface to form high-density active sites. Benefiting from the unique structure, the prepared CeO2 -Ru exhibits outstanding peroxidase (POD) like catalytic activity and selectivity to H2 O2 . Steady-state kinetic study results show that the CeO2 -Ru presents the highest Vmax and turnover number than the state-of-the-art POD-like biocatalysts. Consequently, the CeO2 -Ru discloses a high efficiency, good selectivity, and robust stability in the colorimetric detection of L-cysteine, glucose, and uric acid. Notably, the limit of detection (LOD) can reach 0.176 × 10-3 m for the L-cysteine, 0.095 × 10-3 m for the glucose, and 0.088 × 10-3 m for the uric acid via cascade reaction. This work suggests that the proposed unique CeO2 nanoglue will offer a new path to create single-atom noble metal biocatalysts and take a step closer to future biotherapeutic and biocatalytic applications.
Collapse
Affiliation(s)
- Minjia Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Huang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Baruah DJ, Thakur A, Roy E, Roy K, Basak S, Neog D, Bora HK, Konwar R, Chaturvedi V, Shelke MV, Das MR. Atomically Dispersed Manganese on Graphene Nanosheets as Biocompatible Nanozyme for Glutathione Detection in Liver Tissue Lysate Using Microfluidic Paper-based Analytical Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47902-47920. [PMID: 37812745 DOI: 10.1021/acsami.3c08762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Recently, single atom catalysts (SACs) featuring M-Nx (M = metal) active sites on carbon support have drawn considerable attention due to their promising enzyme-like catalytic properties. However, typical synthesis methods of SACs often involve energy-intensive carbonization processes. Herein, we report a facile one-pot, low-temperature, wet impregnation method to fully utilize M-N4 sites of manganese phthalocyanine (MnPc) by decorating molecular MnPc over the sheets of graphene nanoplatelets (GNP). The synthesized MnPc@GNP exhibits remarkable peroxidase-mimic catalytic activity toward the oxidation of chromogenic 3,3',5,5'-tetramethylbenzidine (TMB) substrate owing to the efficient utilization of atomically dispersed Mn and the high surface-to-volume ratio of the porous catalyst. A nanozyme-based colorimetric sensing probe is developed to detect important biomarker glutathione (GSH) within only 5 min in solution phase based on the ability of GSH to effectively inhibit the TMB oxidation. The high sensitivity and selectivity of the developed colorimetric assay enable us to quantitatively determine GSH concentration in different biological fluids. This work, for the first time, reports a rapid MnPc@GNP nanozyme-based colorimetric assay in the solid substrate by fabricating microfluidic paper-based analytical devices (μPADs). GSH is successfully detected on the fabricated μPADs coated with only 6.0 μg of nanozyme containing 1.6 nmol of Mn in the linear range of 0.5-10 μM with a limit of detection of 1.23 μM. This work also demonstrates the quantitative detection of GSH in mice liver tissue lysate using μPADs, which paves the way to develop μPADs for point-of-care testing.
Collapse
Affiliation(s)
- Diksha J Baruah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Thakur
- Coal and Energy Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Esha Roy
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kallol Roy
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumanjita Basak
- Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Dipankar Neog
- Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himangsu K Bora
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Rituraj Konwar
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikash Chaturvedi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manjusha V Shelke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash R Das
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Wu Z, Sun Y, Mu S, Bai M, Li Q, Ma T, Ma L, Chen F, Luo X, Ye L, Cheng C. Manganese-Based Antioxidase-Inspired Biocatalysts with Axial Mn-N 5 Sites and 2D d-π-Conjugated Networks for Rescuing Stem Cell Fate. Angew Chem Int Ed Engl 2023; 62:e202302329. [PMID: 37002706 DOI: 10.1002/anie.202302329] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Constructing highly effective biocatalysts with controllable coordination geometry for eliminating reactive oxygen species (ROS) to address the current bottlenecks in stem-cell-based therapeutics remains challenging. Herein, inspired by the coordination structure of manganese-based antioxidase, we report a manganese-coordinated polyphthalocyanine-based biocatalyst (Mn-PcBC) with axial Mn-N5 sites and 2D d-π-conjugated networks that serves as an artificial antioxidase to rescue stem cell fate. Owing to the unique chemical and electronic structures, Mn-PcBC displays efficient, multifaceted, and robust ROS-scavenging activities, including elimination of H2 O2 and O2 ⋅- . Consequently, Mn-PcBC efficiently rescues the bioactivity and functionality of stem cells in high-ROS-level microenvironments by protecting the transcription of osteogenesis-related genes. This study offers essential insight into the crucial functions of axially coordinated Mn-N5 sites in ROS scavenging and suggests new strategies to create efficient artificial antioxidases for stem-cell therapies.
Collapse
Affiliation(s)
- Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yimin Sun
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shengdong Mu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ling Ye
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
12
|
Li T, Deng Y, Xing Z, Xiao S, Mu S, Wang T, Gao Y, Ma L, Cheng C, Zhao C. Amorphization-Modulated Metal Sulfides with Boosted Active Sites and Kinetics for Efficient Enzymatic Colorimetric Biodetection. SMALL METHODS 2023:e2300011. [PMID: 37147780 DOI: 10.1002/smtd.202300011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/22/2023] [Indexed: 05/07/2023]
Abstract
Colorimetric biosensing has become a popular sensing method for the portable detection of a variety of biomarkers. Artificial biocatalysts can replace traditional natural enzymes in the fields of enzymatic colorimetric biodetection; however, the exploration of new biocatalysts with efficient, stable, and specific biosensing reactions has remained challenging so far. Here, to enhance the active sites and overcome the sluggish kinetics of metal sulfides, the creation of an amorphous RuS2 (a-RuS2 ) biocatalytic system is reported, which can dramatically boost the peroxidase-mimetic activity of RuS2 for the enzymatic detection of diverse biomolecules. Due to the existence of abundant accessible active sites and mildly surface oxidation, the a-RuS2 biocatalyst displays a twofold Vmax value and much higher reaction kinetics/turnover number (1.63 × 10-2 s-1 ) compared to that of the crystallized RuS2 . Noticeably, the a-RuS2 -based biosensor shows an extremely low detection limit of H2 O2 (3.25 × 10-6 m), l-cysteine (3.39 × 10-6 m), and glucose (9.84 × 10-6 m), respectively, thus showing superior detection sensitivity to many currently reported peroxidase-mimetic nanomaterials. This work offers a new path to create highly sensitive and specific colorimetric biosensors in detecting biomolecules and also provides valuable insights for engineering robust enzyme-like biocatalysts via amorphization-modulated design.
Collapse
Affiliation(s)
- Tiantian Li
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuting Deng
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shengdong Mu
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
14
|
Lv N, Li Q, Zhu H, Mu S, Luo X, Ren X, Liu X, Li S, Cheng C, Ma T. Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structure-Performance Relationships. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206239. [PMID: 36599650 PMCID: PMC9982586 DOI: 10.1002/advs.202206239] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Indexed: 05/05/2023]
Abstract
Metal-porphyrins or metal-phthalocyanines-based organic frameworks (POFs), an emerging family of metal-N-C materials, have attracted widespread interest for application in electrocatalysis due to their unique metal-N4 coordination structure, high conjugated π-electron system, tunable components, and chemical stability. The key challenges of POFs as high-performance electrocatalysts are the need for rational design for porphyrins/phthalocyanines building blocks and an in-depth understanding of structure-activity relationships. Herein, the synthesis methods, the catalytic activity modulation principles, and the electrocatalytic behaviors of 2D/3D POFs are summarized. Notably, detailed pathways are given for modulating the intrinsic activity of the M-N4 site by the microenvironments, including central metal ions, substituent groups, and heteroatom dopants. Meanwhile, the topology tuning and hybrid system, which affect the conjugation network or conductivity of POFs, are also considered. Furthermore, the representative electrocatalytic applications of structured POFs in efficient and environmental-friendly energy conversion areas, such as carbon dioxide reduction reaction, oxygen reduction reaction, and water splitting are briefly discussed. Overall, this comprehensive review focusing on the frontier will provide multidisciplinary and multi-perspective guidance for the subsequent experimental and theoretical progress of POFs and reveal their key challenges and application prospects in future electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Ning Lv
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Huang Zhu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Med‐X Center for MaterialsSichuan UniversityChengdu610041P. R. China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Department of UltrasoundWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
15
|
Mu S, Deng Y, Xing Z, Rong X, He C, Cao S, Ma T, Cheng C, Wang Y. Ir Cluster-Anchored MOFs as Peroxidase-Mimetic Nanoreactors for Diagnosing Hydrogen Peroxide-Related Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56635-56643. [PMID: 36516976 DOI: 10.1021/acsami.2c18676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring multifaceted and highly sensitive biosensors is a major challenge in biotechnology and medical diagnosis. Here, we create a new iridium (Ir) cluster-anchored metal-organic framework (MOF, namely, IrNCs@Ti-MOF via a coordination-assisted strategy) as a peroxidase (POD)-mimetic nanoreactor for colorimetrically diagnosing hydrogen peroxide-related biomarkers. Owing to the IrNCs-N/O coordination of Ti-MOF and unique enzymatic properties of Ir clusters, the IrNCs@Ti-MOF exhibits exceptional and exclusive POD-mimetic activities (Km = 3.94 mM, Vmax = 1.70 μM s-1, and turnover number = 39.64 × 10-3 s-1 for H2O2), thus demonstrating excellent POD-mimetic detecting activity and also super substrate selectivity, which is considerably more efficient than recently reported POD mimetics. Colorimetric studies disclose that this IrNCs@Ti-MOF-based nanoreactor shows multifaceted and efficient diagnosing activities and substrate selectivity, such as a limit of detection (LOD): 14.12 μM for H2O2 at a range of 0-900 μM, LOD: 3.41 μM for l-cysteine at a range of 0-50 μM, and LOD: 20.0 μM for glucose at a range of 0-600 μM, which enables an ultrasensitive and visual determination of abundant H2O2-related biomarkers. The proposed design will not only provide highly sensitive and cheap colorimetric biosensors in medical resource-limited areas but also offer a new path to engineering customizable enzyme-mimetic nanoreactors as a powerful tool for accurate and rapid diagnosis.
Collapse
Affiliation(s)
- Shengdong Mu
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuting Deng
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiao Rong
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chao He
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Sujiao Cao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian Ma
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yinghan Wang
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Zheng W, Zhu R, Wu H, Ma T, Zhou H, Zhou M, He C, Liu X, Li S, Cheng C. Tailoring Bond Microenvironments and Reaction Pathways of Single‐Atom Catalysts for Efficient Water Electrolysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weiqiong Zheng
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Ran Zhu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Huijuan Wu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Tian Ma
- Sichuan University West China Hospital Department of Ultrasound CHINA
| | - Hongju Zhou
- Sichuan University West China Hospital Department of Nephrology CHINA
| | - Mi Zhou
- Sichuan University - Wangjiang Campus: Sichuan University College of Biomass Science and Engineering CHINA
| | - Chao He
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Xikui Liu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Shuang Li
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Chong Cheng
- Sichuan University Department of polymer science No. 24, Yihuan Road 610065 Chengdu CHINA
| |
Collapse
|
17
|
Zheng W, Zhu R, Wu H, Ma T, Zhou H, Zhou M, He C, Liu X, Li S, Cheng C. Tailoring Bond Microenvironments and Reaction Pathways of Single-Atom Catalysts for Efficient Water Electrolysis. Angew Chem Int Ed Engl 2022; 61:e202208667. [PMID: 35876718 DOI: 10.1002/anie.202208667] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 02/05/2023]
Abstract
Single-Atom Sites (SASs) are commonly stabilized and influenced by neighboring atoms in the host; disclosing the structure-reactivity relationships of SASs in water electrolysis are the grand challenges originating from the enormous support materials with complex structures. Through a multidisciplinary view of the design principles, synthesis strategies, characterization techniques, and theoretical analysis of structure-performance correlations, this timely review is dedicated to summarizing the most recent progress in tailoring bond microenvironments on different supports and discussing the reaction pathways and performance advantages of different SAS structures for water electrolysis . The essences and mechanisms of how SAS structures influence their electrocatalysis and the critical needs for their future developments are discussed. Finally, the challenges and perspectives are also provided to stimulate their practically widespread utilization in water-splitting electrolyzers.
Collapse
Affiliation(s)
- Weiqiong Zheng
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Ran Zhu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Huijuan Wu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Tian Ma
- Sichuan University West China Hospital, Department of Ultrasound, CHINA
| | - Hongju Zhou
- Sichuan University West China Hospital, Department of Nephrology, CHINA
| | - Mi Zhou
- Sichuan University - Wangjiang Campus: Sichuan University, College of Biomass Science and Engineering, CHINA
| | - Chao He
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Xikui Liu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Shuang Li
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Chong Cheng
- Sichuan University, Department of polymer science, No. 24, Yihuan Road, 610065, Chengdu, CHINA
| |
Collapse
|