1
|
Alhalabi A, Saint-Pierre C, Boeri-Erba E, Elchinger PH, Kaur H, Gasparutto D, Le Guével X. Designing atomically precise gold nanocluster architectures with DNA-guided self-assembly and biofunctionalization approaches. NANOSCALE 2025; 17:12775-12785. [PMID: 40314154 DOI: 10.1039/d5nr00905g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Atomically precise gold nanoclusters (AuNCs) are nanomolecular species with unique optoelectronic properties, both at the individual and assembled levels. Herein, we demonstrate the precise ligand engineering of AuNCs, enabling the controlled grafting of single-stranded oligonucleotides onto atomically defined AuNCs of different sizes-Au18 and Au25-which emit in the NIR-I (600-800 nm) and NIR-II (900-1300 nm) spectral windows, respectively. These biofunctionalized AuNCs, which can be considered nanomolecular building blocks, were thoroughly characterized using complementary analytical and optical techniques, including absorption and fluorescence spectroscopy, mass spectrometry, liquid chromatography, and gel electrophoresis. Through selective DNA hybridization, we successfully assembled AuNC dimers, trimers, and AuNC-dye nanosystems with high reproducibilities and yields. This work lays the foundation for the design of AuNC-DNA superstructures with potential applications in optoelectronics, sensing, and nanomedicine.
Collapse
Affiliation(s)
- Abdallah Alhalabi
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Cancer Targets & Experimental Therapeutics, 38000 Grenoble, France.
- Univ. Grenoble Alpes, CEA, CNRS, SyMMES-UMR 5819, F-38000 Grenoble, France.
| | | | | | | | | | - Didier Gasparutto
- Univ. Grenoble Alpes, CEA, CNRS, SyMMES-UMR 5819, F-38000 Grenoble, France.
| | - Xavier Le Guével
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Cancer Targets & Experimental Therapeutics, 38000 Grenoble, France.
| |
Collapse
|
2
|
Tong S, Liu J, Chen Y, Xiao X, Li S, Song X, Yang H. Surface engineering of NIR-II luminescent gold nanoclusters for brain glioma-targeted imaging. NANOSCALE 2025; 17:10670-10676. [PMID: 40190226 DOI: 10.1039/d4nr05158k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Ultrasmall gold nanoclusters (AuNCs) with photoluminescence in the second near-infrared region (NIR-II) have emerged as promising probes for in vivo biomedical applications. However, it remains a challenge to utilize NIR-II-emitting AuNCs for imaging brain glioblastoma (GBM), which is highly lethal and hard to diagnose in time. Herein, we have presented systematic investigations on the brain delivery and GBM targeting efficacies of NIR-II-emitting AuNCs protected by different ligands. We first synthesized four types of AuNCs with surface coatings of small thiolated ligands and proteins, and then studied their in vitro penetration capability into the blood-brain barrier (BBB) and in vivo GBM targeting performances. It was found that the BBB permeability of AuNCs determined by the in vitro transwell model was not evidently affected by the surface ligands. Significantly, AuNCs protected by albumin exhibited notably extended blood circulation and less skull binding compared to those protected by small ligands, enabling superior in vivo brain GBM-targeted NIR-II PL imaging. We also modified the albumin-AuNCs with targeting peptides to improve in vivo imaging contrast. Additionally, AuNCs had negligible toxic effects on major organs as well as brain tissues and neurons, corroborating their good biocompatibility. This study examined the surface engineering of NIR-II luminescent AuNCs for brain GBM targeting, which may offer insights into the future design of AuNCs for bioapplications.
Collapse
Affiliation(s)
- Shufen Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jie Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yonghui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Xinyun Xiao
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Shihua Li
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
3
|
Liu Z, Wang Y, Ji W, Ma X, Gianopoulos CG, Calderon S, Ma T, Luo L, Mazumder A, Kirschbaum K, Dickey EC, Peteanu LA, Alfonso D, Jin R. Generalizable Organic-to-Aqueous Phase Transfer of a Au 18 Nanocluster with Luminescence Enhancement and Robust Photocatalysis in Water. ACS NANO 2025; 19:9121-9131. [PMID: 40017318 PMCID: PMC11912569 DOI: 10.1021/acsnano.4c18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
For the majority of gold nanoclusters (NCs), their water insolubility, low photoluminescence (PL) intensity, and less understood photostability are three critical factors that limit their application in the biomedical and photocatalysis fields. In this study, we report a polymer wrapping method for phase transfer of organic soluble NCs into aqueous phase without degrading the electronic and optical properties, and such materials are further demonstrated for robust photocatalysis in water. We first synthesized a Au18(DMBT)14 NC (DMBT = 2,4-dimethylbenzenethiolate) and found that the aromatic ligands confer a greatly enhanced antioxidation capability of the NC compared to the Au18(CHT)14 counterpart (CHT = cyclohexanethiolate), with the critical role of aromatic ligand interactions identified by X-ray crystallography. The organic soluble Au18(DMBT)14 was successfully transferred into the aqueous phase by an amphiphilic polymer (Pluronic F127, abbrev. F127) wrapping method, producing Au18-D@F127 nanoparticles [each containing a few NCs; Au18-D is an abbreviation for Au18(DMBT)14] with a 10-fold enhancement in PL intensity, and similar results were also obtained for Au18(CHT)14. This method is broadly applicable to various NCs, rendering their water solubility and significantly enhancing the PL intensity of otherwise weakly emissive gold NCs. The exceptional antioxidation stability of Au18(DMBT)14 enables the application of Au18-D@F127 NPs for the photocatalytic activation of persulfate ions and subsequent photodegradation of water pollutants efficiently.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yitong Wang
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Weijie Ji
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaowei Ma
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Sebastian Calderon
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Timothy Ma
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lianshun Luo
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Abhrojyoti Mazumder
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kristin Kirschbaum
- Department
of Chemistry and Biochemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Elizabeth C. Dickey
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Linda A. Peteanu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Dominic Alfonso
- United
States Department of Energy, National Energy
Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States
| | - Rongchao Jin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
París Ogáyar M, Ayed Z, Josserand V, Henry M, Artiga Á, Didonè L, Granado M, Serrano A, Espinosa A, Le Guével X, Jaque D. Luminescence Fingerprint of Intracellular NIR-II Gold Nanocluster Transformation: Implications for Sensing and Imaging. ACS NANO 2025; 19:7821-7834. [PMID: 39989214 DOI: 10.1021/acsnano.4c13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gold nanoclusters emitting in the second biological window (NIR-II-AuNCs) have gained significant interest for their potential in deep-tissue bioimaging and biosensing applications due to the partial transparency and reduced autofluorescence of tissues in this spectral range. However, the limited understanding of how the biological environment affects their luminescent properties might hinder their use in bioimaging and biosensing. In this study, we investigated the emission properties of NIR-II-AuNCs when interacting and internalizing into live cells including macrophages, fibroblasts, and cancer cell lines, revealing substantial alterations in their luminescence. A systematic comparison between control and in vitro experiments concluded that the disruption of surface ligands is the main factor responsible for these alterations. NIR-II-AuNCs within cellular environments may also be influenced by other interactions, including aggregation or complexation with proteins. Furthermore, we also corroborated these spectroscopic modifications at the in vivo level, providing additional evidence of the environmental sensitivity of NIR-II-AuNCs. The results obtained in this study contribute to a deeper understanding of the luminescence mechanisms of NIR-II-AuNCs in biological environments in cells and in living tissues and are crucial for their optimization as reliable tools in biological environment for in vitro and in vivo imaging and diagnostics.
Collapse
Affiliation(s)
- Marina París Ogáyar
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Zeineb Ayed
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Veronique Josserand
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Maxime Henry
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Álvaro Artiga
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Livia Didonè
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Medicina, Departamento de Fisiología, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Miriam Granado
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Medicina, Departamento de Fisiología, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Aida Serrano
- Instituto de Cerámica y Vidrio | CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid | CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Xavier Le Guével
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Daniel Jaque
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28034 Madrid, Spain
| |
Collapse
|
5
|
Zhang B, Matus MF, Yao Q, Song X, Wu Z, Hu W, Häkkinen H, Xie J. Unraveling the Stoichiometric Interactions and Synergism between Ligand-Protected Gold Nanoparticles and Proteins. J Am Chem Soc 2025; 147:6404-6414. [PMID: 39823220 DOI: 10.1021/jacs.4c09879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive. Here, we identified stoichiometric interactions of water-soluble gold nanoparticles (Au NPs) with bovine serum albumin (BSA), unraveling their synergism in manipulating emission of nano-bio conjugates in the second near-infrared (NIR-II) regime. Using Au25(p-MBS)18 (p-MBS = para-mercaptobenzenesulfonic acid) as paradigm particles, we achieved precise binding of Au NPs to BSA with definitive molar ratios of 1:1 and 2:1, which is unambiguously evidenced by high-resolution mass spectrometry and transmission electron microscopy. Molecular dynamics simulations identified well-defined binding sites, mediated by electrostatic interactions and hydrogen bonds between the p-MBS moieties on the Au25(p-MBS)18 surface and BSA. Particularly, positively charged residues on BSA were found to be pivotal. By careful control of the molar ratio of Au25(p-MBS)18 to BSA, atomically precise [Au25(p-MBS)18]x-BSA conjugates (x = 1 or 2) could be formed. Through a comprehensive spectroscopy study, an electron transfer process and synergistic effect were manifested in the Au25(p-MBS)18-BSA conjugates, leading to drastically enhanced emission in the NIR-II window. This work offers insights into the precise engineering of nanomaterial-protein interactions and opens new avenues for the development of next-generation nano-bio conjugates for nanotheranostics.
Collapse
Affiliation(s)
- Bihan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - María Francisca Matus
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
6
|
Kang Z, Xue M, Miao H, Wang W, Ding X, Yin MM, Hu YJ. Structure-activity relationship between gold nanoclusters and human serum albumin: Effects of ligand isomerization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124598. [PMID: 38850819 DOI: 10.1016/j.saa.2024.124598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The interactions between gold nanoclusters (AuNCs) and proteins have been extensively investigated. Nevertheless, the structure-activity relationship between gold nanoclusters and proteins in terms of ligand isomerization remained unclear. Here, interactions between Au25NCs modified with para-, inter- and ortho-mercaptobenzoic acid (p/m/o-MBA-Au25NCs) and human serum albumin (HSA) were analyzed. The results of the multispectral approach showed that all three gold nanoclusters bound to the site I in dynamic modes to increase the stability of HSA. There were significant differences in the binding intensity, thermodynamic parameters, main driving forces, and binding ratios between these three gold nanoclusters and HSA, which might be related to the existence forms of the three ligands on the surface of AuNCs. Due to the different polarities of AuNCs themselves, the impact of three AuNCs on the microenvironment of amino acid residues in HSA was also different. It could be seen that ligand isomerization significantly affected the interactions between gold nanoclusters and proteins. This work will provide theoretical guidance for ligand selection and biological applications of metal nanoclusters.
Collapse
Affiliation(s)
- Zhuo Kang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Meng Xue
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Hu Miao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Wen Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Miao-Miao Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
7
|
Pihlajamäki A, Matus MF, Malola S, Häkkinen H. GraphBNC: Machine Learning-Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407046. [PMID: 39318073 PMCID: PMC11586822 DOI: 10.1002/adma.202407046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Hybrid nanostructures between biomolecules and inorganic nanomaterials constitute a largely unexplored field of research, with the potential for novel applications in bioimaging, biosensing, and nanomedicine. Developing such applications relies critically on understanding the dynamical properties of the nano-bio interface. This work introduces and validates a strategy to predict atom-scale interactions between water-soluble gold nanoclusters (AuNCs) and a set of blood proteins (albumin, apolipoprotein, immunoglobulin, and fibrinogen). Graph theory and neural networks are utilized to predict the strengths of interactions in AuNC-protein complexes on a coarse-grained level, which are then optimized in Monte Carlo-based structure search and refined to atomic-scale structures. The training data is based on extensive molecular dynamics (MD) simulations of AuNC-protein complexes, and the validating MD simulations show the robustness of the predictions. This strategy can be generalized to any complexes of inorganic nanostructures and biomolecules provided that one generates enough data about the interactions, and the bioactive parts of the nanostructure can be coarse-grained rationally.
Collapse
Affiliation(s)
- Antti Pihlajamäki
- Department of PhysicsNanoscience CenterUniversity of JyväskyläJyväskyläFI‐40014Finland
| | - María Francisca Matus
- Department of PhysicsNanoscience CenterUniversity of JyväskyläJyväskyläFI‐40014Finland
| | - Sami Malola
- Department of PhysicsNanoscience CenterUniversity of JyväskyläJyväskyläFI‐40014Finland
| | - Hannu Häkkinen
- Department of PhysicsNanoscience CenterUniversity of JyväskyläJyväskyläFI‐40014Finland
- Department of ChemistryNanoscience CenterUniversity of JyväskyläJyväskyläFI‐40014Finland
| |
Collapse
|
8
|
Yang Z, Shi A, Zhang R, Ji Z, Li J, Lyu J, Qian J, Chen T, Wang X, You F, Xie J. When Metal Nanoclusters Meet Smart Synthesis. ACS NANO 2024; 18:27138-27166. [PMID: 39316700 DOI: 10.1021/acsnano.4c09597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) represent a fascinating class of ultrasmall nanoparticles with molecule-like properties, bridging conventional metal-ligand complexes and nanocrystals. Despite their potential for various applications, synthesis challenges such as a precise understanding of varied synthetic parameters and property-driven synthesis persist, hindering their full exploitation and wider application. Incorporating smart synthesis methodologies, including a closed-loop framework of automation, data interpretation, and feedback from AI, offers promising solutions to address these challenges. In this perspective, we summarize the closed-loop smart synthesis that has been demonstrated in various nanomaterials and explore the research frontiers of smart synthesis for MNCs. Moreover, the perspectives on the inherent challenges and opportunities of smart synthesis for MNCs are discussed, aiming to provide insights and directions for future advancements in this emerging field of AI for Science, while the integration of deep learning algorithms stands to substantially enrich research in smart synthesis by offering enhanced predictive capabilities, optimization strategies, and control mechanisms, thereby extending the potential of MNC synthesis.
Collapse
Affiliation(s)
- Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Anye Shi
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14583, United States
| | - Ruixuan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zuowei Ji
- School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Jiali Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jingkuan Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Jing Qian
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tiankai Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Xiaonan Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Fengqi You
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14583, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell University AI for Science Institute (CUAISci), Cornell University, Ithaca, New York 14853, United States
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
9
|
Qiu J, Ahmad F, Ma J, Sun Y, Liu Y, Xiao Y, Xu L, Shu T, Zhang X. From synthesis to applications of biomolecule-protected luminescent gold nanoclusters. Anal Bioanal Chem 2024; 416:3923-3944. [PMID: 38705905 DOI: 10.1007/s00216-024-05303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.
Collapse
Affiliation(s)
- Jiafeng Qiu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxin Ma
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanping Sun
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Liu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Long Xu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
10
|
Abstract
Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered drug delivery, have been widely studied due to their high specificity and effective therapy. However, conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have been made to engineer nanosystems that can generate luminescence through excitation with near-infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light, these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy in deeper tissues. In this review, we systematically report the design and mechanisms of different luminescent nanosystems excited by the 4 excitation sources, methods to enhance the generated luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.
Collapse
Affiliation(s)
- Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Liu Z, Luo L, Jin R. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309073. [PMID: 37922431 DOI: 10.1002/adma.202309073] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Atomically precise gold nanoclusters (NCs) have emerged as a new class of precision materials and attracted wide interest in recent years. One of the unique properties of such nanoclusters pertains to their photoluminescence (PL), for it can widely span visible to near-infrared-I and -II wavelengths (NIR-I/II), and even beyond 1700 nm by manipulating the size, structure, and composition. The current research efforts focus on the structure-PL correlation and the development of strategies for raising the PL quantum yields, which is nontrivial when moving from the visible to the near-infrared wavelengths, especially in the NIR-II regions. This review summarizes the recent progress in the field, including i) the types of PL observed in gold NCs such as fluorescence, phosphorescence, and thermally activated delayed fluorescence, as well as dual emission; ii) some effective strategies that are devised to improve the PL quantum yield (QY) of gold NCs, such as heterometal doping, surface rigidification, and core phonon engineering, with double-digit QYs for the NIR PL on the horizons; and iii) the applications of luminescent gold NCs in bioimaging, photosensitization, and optoelectronics. Finally, the remaining challenges and opportunities for future research are highlighted.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
12
|
Zhou S, Gustavsson L, Beaune G, Chandra S, Niskanen J, Ruokolainen J, Timonen JVI, Ikkala O, Peng B, Ras RHA. pH-Responsive Near-Infrared Emitting Gold Nanoclusters. Angew Chem Int Ed Engl 2023; 62:e202312679. [PMID: 37856667 DOI: 10.1002/anie.202312679] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Near-infrared (NIR) fluorophores with pH-responsive properties suggest merits in biological analyses. This work establishes a general and effective method to obtain pH-responsive NIR emissive gold nanoclusters by introducing aliphatic tertiary amine (TA) groups into the ligands. Computational study suggests that the pH-responsive NIR emission is associated with electronic structure change upon protonation and deprotonation of TA groups. Photo-induced electron transfer between deprotonated TA groups and the surface Au-S motifs of gold nanoclusters can disrupt the radiative transitions and thereby decrease the photoluminescence intensity in basic environments (pH=7-11). By contrast, protonated TA groups curb the electron transfer and restore the photoluminescence intensity in acidic environments (pH=4-7). The pH-responsive NIR-emitting gold nanoclusters serve as a specific and sensitive probe for the lysosomes in the cells, offering non-invasive emissions without interferences from intracellular autofluorescence.
Collapse
Affiliation(s)
- Shaochen Zhou
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Lotta Gustavsson
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Grégory Beaune
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Sourov Chandra
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Jukka Niskanen
- Department of Chemical Engineering and Metallurgy, School of Chemical Engineering, Aalto University, 00076, Espoo, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Olli Ikkala
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Bo Peng
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Robin H A Ras
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| |
Collapse
|
13
|
Pyo K, Matus MF, Hulkko E, Myllyperkiö P, Malola S, Kumpulainen T, Häkkinen H, Pettersson M. Atomistic View of the Energy Transfer in a Fluorophore-Functionalized Gold Nanocluster. J Am Chem Soc 2023. [PMID: 37377151 DOI: 10.1021/jacs.3c02292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Understanding the dynamics of Förster resonance energy transfer (FRET) in fluorophore-functionalized nanomaterials is critical for developing and utilizing such materials in biomedical imaging and optical sensing applications. However, structural dynamics of noncovalently bound systems have a significant effect on the FRET properties affecting their applications in solutions. Here, we study the dynamics of the FRET in atomistic detail by disclosing the structural dynamics of the noncovalently bound azadioxotriangulenium dye (KU) and atomically precise gold nanocluster (Au25(p-MBA)18, p-MBA = para-mercaptobenzoic acid) with a combination of experimental and computational methods. Two distinct subpopulations involved in the energy transfer process between the KU dye and the Au25(p-MBA)18 nanoclusters were resolved by time-resolved fluorescence experiments. Molecular dynamics simulations revealed that KU is bound to the surface of Au25(p-MBA)18 by interacting with the p-MBA ligands as a monomer and as a π-π stacked dimer where the center-to-center distance of the monomers to Au25(p-MBA)18 is separated by ∼0.2 nm, thus explaining the experimental observations. The ratio of the observed energy transfer rates was in reasonably good agreement with the well-known 1/R6 distance dependence for FRET. This work discloses the structural dynamics of the noncovalently bound nanocluster-based system in water solution, providing new insight into the dynamics and energy transfer mechanism of the fluorophore-functionalized gold nanocluster at an atomistic level.
Collapse
Affiliation(s)
- Kyunglim Pyo
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - María Francisca Matus
- Nanoscience Center, Department of Physics, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Eero Hulkko
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
- Nanoscience Center, Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Pasi Myllyperkiö
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Sami Malola
- Nanoscience Center, Department of Physics, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Tatu Kumpulainen
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Hannu Häkkinen
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
- Nanoscience Center, Department of Physics, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Mika Pettersson
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| |
Collapse
|
14
|
Bonačić-Koutecký V, Le Guével X, Antoine R. Engineering Liganded Gold Nanoclusters as Efficient Theranostic Agents for Cancer Applications. Chembiochem 2023; 24:e202200524. [PMID: 36285807 DOI: 10.1002/cbic.202200524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Luminescent gold nanoclusters are rapidly gaining attention as efficient theranostic targets for imaging and therapeutics. Indeed, their ease of synthesis, their tunable optical properties and tumor targeting make them potential candidates for sensitive diagnosis and efficacious therapeutic applications. This concept highlights the key components for designing gold nanoclusters as efficient theranostics focusing on application in the field of oncology.
Collapse
Affiliation(s)
- Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia.,Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Xavier Le Guével
- Institute for Advanced Biosciences, Univ. Grenoble Alpes/INSERM1209/CNRS-UMR5309, Grenoble, France
| | - Rodolphe Antoine
- Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS Univ. Lyon, 69622, Villeurbanne cedex, France
| |
Collapse
|
15
|
Mordini D, Mavridi-Printezi A, Menichetti A, Cantelli A, Li X, Montalti M. Luminescent Gold Nanoclusters for Bioimaging: Increasing the Ligand Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040648. [PMID: 36839016 PMCID: PMC9960743 DOI: 10.3390/nano13040648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 05/31/2023]
Abstract
Fluorescence, and more in general, photoluminescence (PL), presents important advantages for imaging with respect to other diagnostic techniques. In particular, detection methodologies exploiting fluorescence imaging are fast and versatile; make use of low-cost and simple instrumentations; and are taking advantage of newly developed powerful, low-cost, light-based electronic devices, such as light sources and cameras, used in huge market applications, such as civil illumination, computers, and cellular phones. Besides the aforementioned simplicity, fluorescence imaging offers a spatial and temporal resolution that can hardly be achieved with alternative methods. However, the two main limitations of fluorescence imaging for bio-application are still (i) the biological tissue transparency and autofluorescence and (ii) the biocompatibility of the contrast agents. Luminescent gold nanoclusters (AuNCs), if properly designed, combine high biocompatibility with PL in the near-infrared region (NIR), where the biological tissues exhibit higher transparency and negligible autofluorescence. However, the stabilization of these AuNCs requires the use of specific ligands that also affect their PL properties. The nature of the ligand plays a fundamental role in the development and sequential application of PL AuNCs as probes for bioimaging. Considering the importance of this, in this review, the most relevant and recent papers on AuNCs-based bioimaging are presented and discussed highlighting the different functionalities achieved by increasing the complexity of the ligand structure.
Collapse
|
16
|
Luo L, Liu Z, Du X, Jin R. Near-Infrared Dual Emission from the Au 42(SR) 32 Nanocluster and Tailoring of Intersystem Crossing. J Am Chem Soc 2022; 144:19243-19247. [PMID: 36239690 DOI: 10.1021/jacs.2c09107] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work presents the synthesis and intriguing photoluminescence of the Au42(PET)32 (PET = 2-phenylethanethiolate) nanocluster (NC). The Au42(PET)32 NC exhibits dual emission at 875 and 1040 nm, which are revealed to be fluorescence and phosphorescence, respectively. The emission quantum yield (QY) of Au42(PET)32 in dichloromethane is 11.9% at room temperature in air, which is quite rare for thiolate-protected Au NCs. When Au42(PET)32 NCs are embedded in polystyrene films (solid state), the fluorescence was dramatically suppressed while the phosphorescence was significantly enhanced. This divergent behavior is explained by dipolar interaction-induced enhancement of intersystem crossing from singlet to triplet excited state.
Collapse
Affiliation(s)
- Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|