1
|
Wesner A, Raabe JC, Poller MJ, Meier S, Riisager A, Albert J. Conversion of Sugars to Lactic Acid using Homogeneous Niobium-Substituted Polyoxometalate Catalysts. Chemistry 2024; 30:e202402649. [PMID: 39315518 DOI: 10.1002/chem.202402649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 09/25/2024]
Abstract
The catalytic conversion of biomass into high-value chemicals is an increasing field of research. This study uniquely investigates the use of various Keggin-type heteropoly salts (HPS) for the chemical conversion of sugars into lactic acid under mild conditions of 160 °C and 20 bar N2. In the first phase, Nb- and V-substituted HPSs were employed to synthesize lactic acid from dihydroxyacetone, an intermediate in the conversion of sugars to lactic acid. Results indicated that increasing the Nb content within the Keggin structure enhances the yield of lactic acid while reducing the formation of the byproduct acetaldehyde. A correlation was established between the redox activity of the HPS and the catalytic performance. The most active catalyst, Na5[PNb2Mo10O40], (NaNb2) achieved a lactic acid yield of 20.9 % after 1 h of reaction. In the second phase of the study, NaNb2 was applied for the conversion of different sugars including glucose, fructose, mannose, sucrose, xylose, and cellobiose. It was demonstrated that the catalyst remains active for complex hexoses, achieving lactic acid yields of up to 12 %. Post-mortem analysis using infrared (IR) and Raman spectroscopy, nuclear magnetic resonance (NMR), and inductively coupled plasma optical emission spectrometry (ICP-OES) confirmed the stability of NaNb2.
Collapse
Affiliation(s)
- Anne Wesner
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Jan-Christian Raabe
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Maximilian J Poller
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Anders Riisager
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Jakob Albert
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| |
Collapse
|
2
|
Raabe JC, Jameel F, Stein M, Albert J, Poller MJ. Heteroelements in polyoxometalates: a study on the influence of different group 15 elements on polyoxometalate formation. Dalton Trans 2024; 53:454-466. [PMID: 38073473 DOI: 10.1039/d3dt03883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In the field of polyoxometalate (POM) chemistry, different heteroelements are integrated into the cage-like structures, to obtain different structural types of so-called heteropolyanions (HPAs). While it is generally accepted, that some elements favor certain types of structure, a systematic study is still missing. In this article, we present a systematic investigation of the influence of the group 15 elements nitrogen, phosphorous, arsenic, and antimony on the formation of different POM structure types. Our study is comprised of DFT calculations and corresponding experimental structural analysis. In this context, the DFT study establishes the thermodynamics of formation of different coordination geometries with various heteroelements on two POM structure types, the Keggin and the Anderson-Evans structures. Our POM synthesis experiments were performed at two different pH values (1 and 5) and resulted in a variety of heteropolytungstates, which were identified and characterized by elemental analysis as well as single crystal X-ray diffraction and vibrational spectroscopy. With these methods, we were able to establish a clear trend, showing that heavier elements lead to formation of different structure types than lighter elements. These results signify a large step towards a better understanding of POM formation specifically with respect to the choice of heteroelement.
Collapse
Affiliation(s)
- Jan-Christian Raabe
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany.
| | - Froze Jameel
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Jakob Albert
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany.
| | - Maximilian J Poller
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany.
| |
Collapse
|
3
|
Liu Y, Zhao W, Zheng J, Wang H, Cui X, Chi Y. Two New Compounds Based on Bi-Capped Keggin Polyoxoanions and Cu-Bpy Cations Contain Both Cu II and Cu I Complexes: Synthesis, Characterization and Properties. Molecules 2023; 28:4706. [PMID: 37375262 DOI: 10.3390/molecules28124706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Two inorganic-organic hybrid complexes based on bi-capped Keggin-type cluster, {([CuII(2,2'-bpy)2]2[PMoVI8VV2VIV2O40(VIVO)2])[CuI(2,2'-bpy)]}∙2H2O (1) and {[CuII(2,2'-bpy)2]2[SiMoVI8.5MoV2.5VIVO40(VIVO)2]}[CuI0.5(2,2'-bpy)(H2O)0.5] (2) (bpy = bipyridine), had been hydrothermally synthesized and structurally characterized by elemental analysis, FT-IR, TGA, PXRD and X-ray single-crystal diffraction analysis. Compound 1 consists of a novel 1-D chain structure constructed from [CuI(2,2'-bpy)]+ unit linking bi-supported POMs anion {[CuII(2,2'-bpy)2]2[PMoVI8VV2VIV2O40(VIVO)2]}-. Compound 2 is a bi-capped Keggin cluster bi-supported Cu-bpy complex. The main highlights of the two compounds are that Cu-bpy cations contain both CuI and CuII complexes. Furthermore, the fluorescence properties, the catalytic properties, and the photocatalytic performance of compounds 1 and 2 have been assessed, and the results show that both compounds are active for styrene epoxidation and degradation and adsorption of Methylene blue (MB), Rhodamine B (RhB) and mixed aqueous solutions.
Collapse
Affiliation(s)
- Yabing Liu
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
- College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Wentong Zhao
- College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Jijun Zheng
- College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Huan Wang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
- College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Xiaobing Cui
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Yaodan Chi
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
4
|
Guo L, He L, Zhuang Q, Li B, Wang C, Lv Y, Chu J, Song YF. Recent Advances in Confining Polyoxometalates and the Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207315. [PMID: 36929209 DOI: 10.1002/smll.202207315] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Indexed: 06/15/2023]
Abstract
Polyoxometalates (POMs) are widely used in catalysis, energy storage, biomedicine, and other research fields due to their unique acidity, photothermal, and redox features. However, the leaching and agglomeration problems of POMs greatly limit their practical applications. Confining POMs in a host material is an efficient tool to address the above-mentioned issues. POM@host materials have received extensive attention in recent years. They not only inherent characteristics of POMs and host, but also play a significant synergistic effect from each component. This review focuses on the recent advances in the development and applications of POM@host materials. Different types of host materials are elaborated in detail, including tubular, layered, and porous materials. Variations in the structures and properties of POMs and hosts before and after confinement are highlighted as well. In addition, an overview of applications for the representative POM@host materials in electrochemical, catalytic, and biological fields is provided. Finally, the challenges and future perspectives of POM@host composites are discussed.
Collapse
Affiliation(s)
- Lin Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qinghe Zhuang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bole Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Cuifeng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanfei Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jinfeng Chu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Raabe JC, Aceituno Cruz J, Albert J, Poller MJ. Comparative Spectroscopic and Electrochemical Study of V(V)-Substituted Keggin-Type Phosphomolybdates and -Tungstates. INORGANICS 2023. [DOI: 10.3390/inorganics11040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Vanadium-substituted Keggin-type heteropolyanions have been studied for a wide variety of applications, ranging from catalysis to antiviral/antimicrobial agents. While the V-substituted phosphomolybdates [PVxMo12−xO40](3+x)− have been well investigated in this context, comparatively little is known about the corresponding phosphotungstates [PVxW12-xO40](3+x)−. We have succeeded in synthesizing the sodium salts of the whole series [PVxW12−xO40](3+x)−, for x = 1 to 6, and characterised them spectroscopically (FT-IR, UV-Vis, 31P-, and 51V-NMR) and electrochemically (CV and SWV). Thereby, direct comparisons between the vanadium-substituted phosphomolybdates and -tungstates, with substitution degrees from 1 to 6, can be established, which provides a solid basis for further investigations of potential applications.
Collapse
Affiliation(s)
- Jan-Christian Raabe
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - José Aceituno Cruz
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Jakob Albert
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Maximilian J. Poller
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| |
Collapse
|